

Fault Management and Maintenance (Doctor)

	1. Doctor
	1.1. Doctor User Guide

	2. Doctor
	2.1. Design Documents

	2.2. Doctor: Fault Management and Maintenance

	2.3. Manuals

	2.4. Indices

1. Doctor

	1.1. Doctor User Guide
	1.1.1. Doctor capabilities and usage

1.1. Doctor User Guide

	1.1.1. Doctor capabilities and usage
	1.1.1.1. Immediate Notification

	1.1.1.2. Consistent resource state awareness

	1.1.1.3. Valid compute host status given to VM owner

	1.1.1.4. Port data plane status update

	1.1.1.5. Doctor driver (Congress)

	1.1.1.6. Event API (Vitrage)

	1.1.1.7. Doctor datasource (Vitrage)

1.1.1. Doctor capabilities and usage

figure1 shows the currently implemented and tested architecture of
Doctor. The implementation is based on OpenStack and related components. The
Monitor can be realized by a sample Python-based implementation provided in the
Doctor code repository. The Controller is realized by OpenStack Nova, Neutron
and Cinder for compute, network and storage, respectively. The Inspector can be
realized by OpenStack Congress, Vitrage or a sample Python-based implementation also
available in the code repository of Doctor. The Notifier is realized by
OpenStack Aodh.

[image: ../../_images/figure11.png]
Implemented and tested architecture

1.1.1.1. Immediate Notification

Immediate notification can be used by creating ‘event’ type alarm via
OpenStack Alarming (Aodh) API with relevant internal components support.

See:
- Upstream spec document:
https://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-evaluator.html
- Aodh official documentation:
https://docs.openstack.org/aodh/latest

An example of a consumer of this notification can be found in the Doctor
repository. It can be executed as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor
cd doctor/doctor_tests/consumer
CONSUMER_PORT=12346
python sample.py "$CONSUMER_PORT" > consumer.log 2>&1 &

1.1.1.2. Consistent resource state awareness

Resource state of compute host can be changed/updated according to a trigger
from a monitor running outside of OpenStack Compute (Nova) by using
force-down API.

See:
* Upstream spec document: https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/mark-host-down.html
* Upstream Compute API reference document: https://developer.openstack.org/api-ref/compute
* Doctor Mark Host Down Manual: https://git.opnfv.org/doctor/tree/docs/development/manuals/mark-host-down_manual.rst

1.1.1.3. Valid compute host status given to VM owner

The resource state of a compute host can be retrieved by a user with the
OpenStack Compute (Nova) servers API.

See:
* Upstream spec document: https://specs.openstack.org/openstack/nova-specs/specs/mitaka/implemented/get-valid-server-state.html
* Upstream Compute API reference document: https://developer.openstack.org/api-ref/compute
* Doctor Get Valid Server State Manual: https://git.opnfv.org/doctor/tree/docs/development/manuals/get-valid-server-state.rst

1.1.1.4. Port data plane status update

Port data plane status can be changed/updated in the case of issues in the underlying data plane
affecting connectivity from/to Neutron ports.

See:
* Upstream spec document: https://specs.openstack.org/openstack/neutron-specs/specs/pike/port-data-plane-status.html
* Upstream Networking API reference document: https://developer.openstack.org/api-ref/network

1.1.1.5. Doctor driver (Congress)

The Doctor driver can be notified about NFVI failures that have been detected by monitoring systems.

See:
* Upstream spec document: https://specs.openstack.org/openstack/congress-specs/specs/mitaka/push-type-datasource-driver.html
* Congress official documentation: https://docs.openstack.org/congress/latest

1.1.1.6. Event API (Vitrage)

With this API, monitoring systems can push events to the Doctor datasource.

See:
* Upstream spec document: https://specs.openstack.org/openstack/vitrage-specs/specs/ocata/event-api.html
* Vitrage official documentation: https://docs.openstack.org/vitrage/latest

1.1.1.7. Doctor datasource (Vitrage)

After receiving events from monitoring systems, the Doctor datasource identifies the affected resources based on the resource topology.

See:
* Upstream spec document: https://specs.openstack.org/openstack/vitrage-specs/specs/ocata/doctor-datasource.html

2. Doctor

	2.1. Design Documents
	2.1.1. Report host fault to update server state immediately

	2.1.2. Notification Alarm Evaluator

	2.1.3. Neutron Port Status Update

	2.1.4. Port data plane status

	2.1.5. Inspector Design Guideline

	2.1.6. Performance Profiler

	2.1.7. Planned Maintenance Design Guideline

	2.1.5. Inspector Design Guideline

	2.2. Doctor: Fault Management and Maintenance
	2.2.1. Introduction

	2.2.2. Use cases and scenarios

	2.2.3. High level architecture and general features

	2.2.4. Gap analysis in upstream projects

	2.2.5. Detailed architecture and interface specification

	2.2.6. Summary and conclusion

	2.2.7. Annex: NFVI Faults

	2.2.8. References and bibliography

	2.3. Manuals
	2.3.1. OpenStack NOVA API for marking host down.

	2.3.2. Get valid server state

2.4. Indices

	Search Page

2.1. Design Documents

This is the directory to store design documents which may include draft
versions of blueprints written before proposing to upstream OSS communities
such as OpenStack, in order to keep the original blueprint as reviewed in
OPNFV. That means there could be out-dated blueprints as result of further
refinements in the upstream OSS community. Please refer to the link in each
document to find the latest version of the blueprint and status of development
in the relevant OSS community.

See also https://wiki.opnfv.org/requirements_projects .

	2.1.1. Report host fault to update server state immediately
	2.1.1.1. Problem description
	2.1.1.1.1. Use Cases

	2.1.1.1.2. Project Priority

	2.1.1.2. Proposed change
	2.1.1.2.1. Alternatives

	2.1.1.2.2. Data model impact

	2.1.1.2.3. REST API impact

	2.1.1.2.4. Security impact

	2.1.1.2.5. Notifications impact

	2.1.1.2.6. Other end user impact

	2.1.1.2.7. Performance Impact

	2.1.1.2.8. Other deployer impact

	2.1.1.2.9. Developer impact

	2.1.1.3. Implementation
	2.1.1.3.1. Assignee(s)

	2.1.1.3.2. Work Items

	2.1.1.4. Dependencies

	2.1.1.5. Testing

	2.1.1.6. Documentation Impact

	2.1.1.7. References

	2.1.2. Notification Alarm Evaluator
	2.1.2.1. Problem description

	2.1.2.2. Proposed change
	2.1.2.2.1. Alternatives

	2.1.2.2.2. Data model impact

	2.1.2.2.3. REST API impact

	2.1.2.2.4. Security impact

	2.1.2.2.5. Pipeline impact

	2.1.2.2.6. Other end user impact

	2.1.2.2.7. Performance/Scalability Impacts

	2.1.2.2.8. Other deployer impact

	2.1.2.2.9. Developer impact

	2.1.2.3. Implementation
	2.1.2.3.1. Assignee(s)

	2.1.2.3.2. Work Items

	2.1.2.4. Future lifecycle

	2.1.2.5. Dependencies

	2.1.2.6. Testing

	2.1.2.7. Documentation Impact

	2.1.2.8. References

	2.1.3. Neutron Port Status Update

	2.1.4. Port data plane status
	2.1.4.1. Problem Description

	2.1.4.2. Proposed Change
	2.1.4.2.1. Data Model Impact

	2.1.4.2.2. REST API Impact
	2.1.4.2.2.1. Examples

	2.1.4.2.3. Command Line Client Impact

	2.1.4.2.4. Security Impact

	2.1.4.2.5. Notifications Impact

	2.1.4.2.6. Performance Impact

	2.1.4.2.7. IPv6 Impact

	2.1.4.2.8. Other Deployer Impact

	2.1.4.2.9. Developer Impact

	2.1.4.3. Implementation
	2.1.4.3.1. Assignee(s)

	2.1.4.3.2. Work Items

	2.1.4.4. Documentation Impact

	2.1.4.5. References

	2.1.5. Inspector Design Guideline
	2.1.5.1. Problem Description

	2.1.5.2. Guidelines
	2.1.5.2.1. Host specific VMs list

	2.1.5.2.2. Parallel execution

	2.1.5.2.3. Shortcut notification

	2.1.5.3. Appendix

	2.1.6. Performance Profiler
	2.1.6.1. Problem Description

	2.1.6.2. Proposed Change

	2.1.6.3. Working Items

	2.1.7. Planned Maintenance Design Guideline
	2.1.7.1. Problem Description

	2.1.7.2. Guidelines

	2.1.7.3. Benefits

	2.1.7.4. Future considerations
	2.1.7.4.1. POC

	2.1.5. Inspector Design Guideline
	2.1.5.1. Problem Description

	2.1.5.2. Guidelines
	2.1.5.2.1. Host specific VMs list

	2.1.5.2.2. Parallel execution

	2.1.5.2.3. Shortcut notification

	2.1.5.3. Appendix

Note

This is a specification draft of a blueprint proposed for OpenStack Nova
Liberty. It was written by project member(s) and agreed within the project
before submitting it upstream. No further changes to its content will be
made here anymore; please follow it upstream:

	Current version upstream: https://review.openstack.org/#/c/169836/

	Development activity:
https://blueprints.launchpad.net/nova/+spec/mark-host-down

Original draft is as follow:

2.1.1. Report host fault to update server state immediately

https://blueprints.launchpad.net/nova/+spec/update-server-state-immediately

A new API is needed to report a host fault to change the state of the
instances and compute node immediately. This allows usage of evacuate API
without a delay. The new API provides the possibility for external monitoring
system to detect any kind of host failure fast and reliably and inform
OpenStack about it. Nova updates the compute node state and states of the
instances. This way the states in the Nova DB will be in sync with the
real state of the system.

2.1.1.1. Problem description

	Nova state change for failed or unreachable host is slow and does not
reliably state compute node is down or not. This might cause same instance
to run twice if action taken to evacuate instance to another host.

	Nova state for instances on failed compute node will not change,
but remains active and running. This gives user a false information about
instance state. Currently one would need to call “nova reset-state” for each
instance to have them in error state.

	OpenStack user cannot make HA actions fast and reliably by trusting instance
state and compute node state.

	As compute node state changes slowly one cannot evacuate instances.

2.1.1.1.1. Use Cases

Use case in general is that in case there is a host fault one should change
compute node state fast and reliably when using DB servicegroup backend.
On top of this here is the use cases that are not covered currently to have
instance states changed correctly:
* Management network connectivity lost between controller and compute node.
* Host HW failed.

Generic use case flow:

	The external monitoring system detects a host fault.

	The external monitoring system fences the host if not down already.

	The external system calls the new Nova API to force the failed compute node
into down state as well as instances running on it.

	Nova updates the compute node state and state of the effected instances to
Nova DB.

Currently nova-compute state will be changing “down”, but it takes a long
time. Server state keeps as “vm_state: active” and “power_state:
running”, which is not correct. By having external tool to detect host faults
fast, fence host by powering down and then report host down to OpenStack, all
these states would reflect to actual situation. Also if OpenStack will not
implement automatic actions for fault correlation, external tool can do that.
This could be configured for example in server instance METADATA easily and be
read by external tool.

2.1.1.1.2. Project Priority

Liberty priorities have not yet been defined.

2.1.1.2. Proposed change

There needs to be a new API for Admin to state host is down. This API is used
to mark compute node and instances running on it down to reflect the real
situation.

Example on compute node is:

	When compute node is up and running:
vm_state: active and power_state: running
nova-compute state: up status: enabled

	When compute node goes down and new API is called to state host is down:
vm_state: stopped power_state: shutdown
nova-compute state: down status: enabled

vm_state values: soft-delete, deleted, resized and error
should not be touched.
task_state effect needs to be worked out if needs to be touched.

2.1.1.2.1. Alternatives

There is no attractive alternatives to detect all different host faults than
to have a external tool to detect different host faults. For this kind of tool
to exist there needs to be new API in Nova to report fault. Currently there
must have been some kind of workarounds implemented as cannot trust or get the
states from OpenStack fast enough.

2.1.1.2.2. Data model impact

None

2.1.1.2.3. REST API impact

	Update CLI to report host is down

nova host-update command

	usage: nova host-update [–status <enable|disable>]

	[–maintenance <enable|disable>]
[–report-host-down]
<hostname>

Update host settings.

Positional arguments

<hostname>
Name of host.

Optional arguments

–status <enable|disable>
Either enable or disable a host.

–maintenance <enable|disable>
Either put or resume host to/from maintenance.

–down
Report host down to update instance and compute node state in db.

	Update Compute API to report host is down:

/v2.1/{tenant_id}/os-hosts/{host_name}

Normal response codes: 200
Request parameters

Parameter Style Type Description
host_name URI xsd:string The name of the host of interest to you.

	{

	
	“host”: {

	“status”: “enable”,
“maintenance_mode”: “enable”
“host_down_reported”: “true”

}

}

	{

	
	“host”: {

	“host”: “65c5d5b7e3bd44308e67fc50f362aee6”,
“maintenance_mode”: “enabled”,
“status”: “enabled”
“host_down_reported”: “true”

}

}

	New method to nova.compute.api module HostAPI class to have a
to mark host related instances and compute node down:
set_host_down(context, host_name)

	class novaclient.v2.hosts.HostManager(api) method update(host, values)
Needs to handle reporting host down.

	Schema does not need changes as in db only service and server states are to
be changed.

2.1.1.2.4. Security impact

API call needs admin privileges (in the default policy configuration).

2.1.1.2.5. Notifications impact

None

2.1.1.2.6. Other end user impact

None

2.1.1.2.7. Performance Impact

Only impact is that user can get information faster about instance and
compute node state. This also gives possibility to evacuate faster.
No impact that would slow down. Host down should be rare occurrence.

2.1.1.2.8. Other deployer impact

Developer can make use of any external tool to detect host fault and report it
to OpenStack.

2.1.1.2.9. Developer impact

None

2.1.1.3. Implementation

2.1.1.3.1. Assignee(s)

Primary assignee: Tomi Juvonen
Other contributors: Ryota Mibu

2.1.1.3.2. Work Items

	Test cases.

	API changes.

	Documentation.

2.1.1.4. Dependencies

None

2.1.1.5. Testing

Test cases that exists for enabling or putting host to maintenance should be
altered or similar new cases made test new functionality.

2.1.1.6. Documentation Impact

New API needs to be documented:

	Compute API extensions documentation.
http://developer.openstack.org/api-ref-compute-v2.1.html

	Nova commands documentation.
http://docs.openstack.org/user-guide-admin/content/novaclient_commands.html

	Compute command-line client documentation.
http://docs.openstack.org/cli-reference/content/novaclient_commands.html

	nova.compute.api documentation.
http://docs.openstack.org/developer/nova/api/nova.compute.api.html

	High Availability guide might have page to tell external tool could provide
ability to provide faster HA as able to update states by new API.
http://docs.openstack.org/high-availability-guide/content/index.html

2.1.1.7. References

	OPNFV Doctor project: https://wiki.opnfv.org/doctor

	OpenStack Instance HA Proposal:
http://blog.russellbryant.net/2014/10/15/openstack-instance-ha-proposal/

	The Different Facets of OpenStack HA:
http://blog.russellbryant.net/2015/03/10/
the-different-facets-of-openstack-ha/

2.1.2. Notification Alarm Evaluator

Note

This is spec draft of blueprint for OpenStack Ceilomter Liberty.
To see current version: https://review.openstack.org/172893
To track development activity:
https://blueprints.launchpad.net/ceilometer/+spec/notification-alarm-evaluator

https://blueprints.launchpad.net/ceilometer/+spec/notification-alarm-evaluator

This blueprint proposes to add a new alarm evaluator for handling alarms on
events passed from other OpenStack services, that provides event-driven alarm
evaluation which makes new sequence in Ceilometer instead of the polling-based
approach of the existing Alarm Evaluator, and realizes immediate alarm
notification to end users.

2.1.2.1. Problem description

As an end user, I need to receive alarm notification immediately once
Ceilometer captured an event which would make alarm fired, so that I can
perform recovery actions promptly to shorten downtime of my service.
The typical use case is that an end user set alarm on “compute.instance.update”
in order to trigger recovery actions once the instance status has changed to
‘shutdown’ or ‘error’. It should be nice that an end user can receive
notification within 1 second after fault observed as the same as other helth-
check mechanisms can do in some cases.

The existing Alarm Evaluator is periodically querying/polling the databases
in order to check all alarms independently from other processes. This is good
approach for evaluating an alarm on samples stored in a certain period.
However, this is not efficient to evaluate an alarm on events which are emitted
by other OpenStack servers once in a while.

The periodical evaluation leads delay on sending alarm notification to users.
The default period of evaluation cycle is 60 seconds. It is recommended that
an operator set longer interval than configured pipeline interval for
underlying metrics, and also longer enough to evaluate all defined alarms
in certain period while taking into account the number of resources, users and
alarms.

2.1.2.2. Proposed change

The proposal is to add a new event-driven alarm evaluator which receives
messages from Notification Agent and finds related Alarms, then evaluates each
alarms;

	New alarm evaluator could receive event notification from Notification Agent
by which adding a dedicated notifier as a publisher in pipeline.yaml
(e.g. notifier://?topic=event_eval).

	When new alarm evaluator received event notification, it queries alarm
database by Project ID and Resource ID written in the event notification.

	Found alarms are evaluated by referring event notification.

	Depending on the result of evaluation, those alarms would be fired through
Alarm Notifier as the same as existing Alarm Evaluator does.

This proposal also adds new alarm type “notification” and “notification_rule”.
This enables users to create alarms on events. The separation from other alarm
types (such as “threshold” type) is intended to show different timing of
evaluation and different format of condition, since the new evaluator will
check each event notification once it received whereas “threshold” alarm can
evaluate average of values in certain period calculated from multiple samples.

The new alarm evaluator handles Notification type alarms, so we have to change
existing alarm evaluator to exclude “notification” type alarms from evaluation
targets.

2.1.2.2.1. Alternatives

There was similar blueprint proposal “Alarm type based on notification”, but
the approach is different. The old proposal was to adding new step (alarm
evaluations) in Notification Agent every time it received event from other
OpenStack services, whereas this proposal intends to execute alarm evaluation
in another component which can minimize impact to existing pipeline processing.

Another approach is enhancement of existing alarm evaluator by adding
notification listener. However, there are two issues; 1) this approach could
cause stall of periodical evaluations when it receives bulk of notifications,
and 2) this could break the alarm portioning i.e. when alarm evaluator received
notification, it might have to evaluate some alarms which are not assign to it.

2.1.2.2.2. Data model impact

Resource ID will be added to Alarm model as an optional attribute.
This would help the new alarm evaluator to filter out non-related alarms
while querying alarms, otherwise it have to evaluate all alarms in the project.

2.1.2.2.3. REST API impact

Alarm API will be extended as follows;

	Add “notification” type into alarm type list

	Add “resource_id” to “alarm”

	Add “notification_rule” to “alarm”

Sample data of Notification-type alarm:

{
 "alarm_actions": [
 "http://site:8000/alarm"
],
 "alarm_id": null,
 "description": "An alarm",
 "enabled": true,
 "insufficient_data_actions": [
 "http://site:8000/nodata"
],
 "name": "InstanceStatusAlarm",
 "notification_rule": {
 "event_type": "compute.instance.update",
 "query" : [
 {
 "field" : "traits.state",
 "type" : "string",
 "value" : "error",
 "op" : "eq",
 },
]
 },
 "ok_actions": [],
 "project_id": "c96c887c216949acbdfbd8b494863567",
 "repeat_actions": false,
 "resource_id": "153462d0-a9b8-4b5b-8175-9e4b05e9b856",
 "severity": "moderate",
 "state": "ok",
 "state_timestamp": "2015-04-03T17:49:38.406845",
 "timestamp": "2015-04-03T17:49:38.406839",
 "type": "notification",
 "user_id": "c96c887c216949acbdfbd8b494863567"
}

“resource_id” will be refered to query alarm and will not be check permission
and belonging of project.

2.1.2.2.4. Security impact

None

2.1.2.2.5. Pipeline impact

None

2.1.2.2.6. Other end user impact

None

2.1.2.2.7. Performance/Scalability Impacts

When Ceilomter received a number of events from other OpenStack services in
short period, this alarm evaluator can keep working since events are queued in
a messaging queue system, but it can cause delay of alarm notification to users
and increase the number of read and write access to alarm database.

“resource_id” can be optional, but restricting it to mandatory could be reduce
performance impact. If user create “notification” alarm without “resource_id”,
those alarms will be evaluated every time event occurred in the project.
That may lead new evaluator heavy.

2.1.2.2.8. Other deployer impact

New service process have to be run.

2.1.2.2.9. Developer impact

Developers should be aware that events could be notified to end users and avoid
passing raw infra information to end users, while defining events and traits.

2.1.2.3. Implementation

2.1.2.3.1. Assignee(s)

	Primary assignee:

	r-mibu

	Other contributors:

	None

	Ongoing maintainer:

	None

2.1.2.3.2. Work Items

	New event-driven alarm evaluator

	Add new alarm type “notification” as well as AlarmNotificationRule

	Add “resource_id” to Alarm model

	Modify existing alarm evaluator to filter out “notification” alarms

	Add new config parameter for alarm request check whether accepting alarms
without specifying “resource_id” or not

2.1.2.4. Future lifecycle

This proposal is key feature to provide information of cloud resources to end
users in real-time that enables efficient integration with user-side manager
or Orchestrator, whereas currently those information are considered to be
consumed by admin side tool or service.
Based on this change, we will seek orchestrating scenarios including fault
recovery and add useful event definition as well as additional traits.

2.1.2.5. Dependencies

None

2.1.2.6. Testing

New unit/scenario tests are required for this change.

2.1.2.7. Documentation Impact

	Proposed evaluator will be described in the developer document.

	New alarm type and how to use will be explained in user guide.

2.1.2.8. References

	OPNFV Doctor project: https://wiki.opnfv.org/doctor

	Blueprint “Alarm type based on notification”:
https://blueprints.launchpad.net/ceilometer/+spec/alarm-on-notification

2.1.3. Neutron Port Status Update

Note

This document represents a Neutron RFE reviewed in the Doctor project before submitting upstream to Launchpad Neutron
space. The document is not intended to follow a blueprint format or to be an extensive document.
For more information, please visit http://docs.openstack.org/developer/neutron/policies/blueprints.html

The RFE was submitted to Neutron. You can follow the discussions in https://bugs.launchpad.net/neutron/+bug/1598081

Neutron port status field represents the current status of a port in the cloud infrastructure. The field can take one of
the following values: ‘ACTIVE’, ‘DOWN’, ‘BUILD’ and ‘ERROR’.

At present, if a network event occurs in the data-plane (e.g. virtual or physical switch fails or one of its ports,
cable gets pulled unintentionally, infrastructure topology changes, etc.), connectivity to logical ports may be affected
and tenants’ services interrupted. When tenants/cloud administrators are looking up their resources’ status (e.g. Nova
instances and services running in them, network ports, etc.), they will wrongly see everything looks fine. The problem
is that Neutron will continue reporting port ‘status’ as ‘ACTIVE’.

Many SDN Controllers managing network elements have the ability to detect and report network events to upper layers.
This allows SDN Controllers’ users to be notified of changes and react accordingly. Such information could be consumed
by Neutron so that Neutron could update the ‘status’ field of those logical ports, and additionally generate a
notification message to the message bus.

However, Neutron misses a way to be able to receive such information through e.g. ML2 driver or the REST API (‘status’
field is read-only). There are pros and cons on both of these approaches as well as other possible approaches. This RFE
intends to trigger a discussion on how Neutron could be improved to receive fault/change events from SDN Controllers or
even also from 3rd parties not in charge of controlling the network (e.g. monitoring systems, human admins).

2.1.4. Port data plane status

https://bugs.launchpad.net/neutron/+bug/1598081

Neutron does not detect data plane failures affecting its logical resources.
This spec addresses that issue by means of allowing external tools to report to
Neutron about faults in the data plane that are affecting the ports. A new REST
API field is proposed to that end.

2.1.4.1. Problem Description

An initial description of the problem was introduced in bug #159801 [1]. This
spec focuses on capturing one (main) part of the problem there described, i.e.
extending Neutron’s REST API to cover the scenario of allowing external tools
to report network failures to Neutron. Out of scope of this spec are works to
enable port status changes to be received and managed by mechanism drivers.

This spec also tries to address bug #1575146 [2]. Specifically, and argued by
the Neutron driver team in [3]:

	Neutron should not shut down the port completly upon detection of physnet
failure; connectivity between instances on the same node may still be
reachable. Externals tools may or may not want to trigger a status change on
the port based on their own logic and orchestration.

	Port down is not detected when an uplink of a switch is down;

	The physnet bridge may have multiple physical interfaces plugged; shutting
down the logical port may not be needed in case network redundancy is in
place.

2.1.4.2. Proposed Change

A couple of possible approaches were proposed in [1] (comment #3). This spec
proposes tackling the problema via a new extension API to the port resource.
The extension adds a new attribute ‘dp-down’ (data plane down) to represent the
status of the data plane. The field should be read-only by tenants and
read-write by admins.

Neutron should send out an event to the message bus upon toggling the data
plane status value. The event is relevant for e.g. auditing.

2.1.4.2.1. Data Model Impact

A new attribute as extension will be added to the ‘ports’ table.

	Attribute
Name

	Type

	Access

	Default
Value

	Validation/
Conversion

	Description

	dp_down

	boolean

	RO, tenant
RW, admin

	False

	True/False

	

2.1.4.2.2. REST API Impact

A new API extension to the ports resource is going to be introduced.

EXTENDED_ATTRIBUTES_2_0 = {
 'ports': {
 'dp_down': {'allow_post': False, 'allow_put': True,
 'default': False, 'convert_to': convert_to_boolean,
 'is_visible': True},
 },
}

2.1.4.2.2.1. Examples

Updating port data plane status to down:

PUT /v2.0/ports/<port-uuid>
Accept: application/json
{
 "port": {
 "dp_down": true
 }
}

2.1.4.2.3. Command Line Client Impact

neutron port-update [--dp-down <True/False>] <port>
openstack port set [--dp-down <True/False>] <port>

Argument –dp-down is optional. Defaults to False.

2.1.4.2.4. Security Impact

None

2.1.4.2.5. Notifications Impact

A notification (event) upon toggling the data plane status (i.e. ‘dp-down’
attribute) value should be sent to the message bus. Such events do not happen
with high frequency and thus no negative impact on the notification bus is
expected.

2.1.4.2.6. Performance Impact

None

2.1.4.2.7. IPv6 Impact

None

2.1.4.2.8. Other Deployer Impact

None

2.1.4.2.9. Developer Impact

None

2.1.4.3. Implementation

2.1.4.3.1. Assignee(s)

	cgoncalves

2.1.4.3.2. Work Items

	New ‘dp-down’ attribute in ‘ports’ database table

	API extension to introduce new field to port

	Client changes to allow for data plane status (i.e. ‘dp-down’ attribute’)
being set

	Policy (tenants read-only; admins read-write)

2.1.4.4. Documentation Impact

Documentation for both administrators and end users will have to be
contemplated. Administrators will need to know how to set/unset the data plane
status field.

2.1.4.5. References

	1

	RFE: Port status update,
https://bugs.launchpad.net/neutron/+bug/1598081

	2

	RFE: ovs port status should the same as physnet
https://bugs.launchpad.net/neutron/+bug/1575146

	3

	Neutron Drivers meeting, July 21, 2016
http://eavesdrop.openstack.org/meetings/neutron_drivers/2016/neutron_drivers.2016-07-21-22.00.html

2.1.5. Inspector Design Guideline

Note

This is spec draft of design guideline for inspector component.
JIRA ticket to track the update and collect comments: DOCTOR-73 [https://jira.opnfv.org/browse/DOCTOR-73].

This document summarize the best practise in designing a high performance
inspector to meet the requirements in OPNFV Doctor project [https://wiki.opnfv.org/doctor].

2.1.5.1. Problem Description

Some pitfalls has be detected during the development of sample inspector, e.g.
we suffered a significant performance degrading in listing VMs in a host [https://lists.opnfv.org/pipermail/opnfv-tech-discuss/2016-September/012591.html].

A patch set for caching the list [https://gerrit.opnfv.org/gerrit/#/c/20877/] has been committed to solve issue. When a
new inspector is integrated, it would be nice to have an evaluation of existing
design and give recommendations for improvements.

This document can be treated as a source of related blueprints in inspector
projects.

2.1.5.2. Guidelines

2.1.5.2.1. Host specific VMs list

While requirement in doctor project is to have alarm about fault to consumer in one second, it is just a limit we have
set in requirements. When talking about fault management in Telco, the implementation needs to be by all means optimal
and the one second is far from traditional Telco requirements.

One thing to be optimized in inspector is to eliminate the need to read list of host specific VMs from Nova API, when
it gets a host specific failure event. Optimal way of implementation would be to initialize this list when Inspector
start by reading from Nova API and after this list would be kept up-to-date by instance.update notifications
received from nova. Polling Nova API can be used as a complementary channel to make snapshot of hosts and VMs list in
order to keep the data consistent with reality.

This is enhancement and not perhaps something needed to keep under one second in a small system. Anyhow this would be
something needed in case of production use.

This guideline can be summarized as following:

	cache the host VMs mapping instead of reading it on request

	subscribe and handle update notifications to keep the list up to date

	make snapshot periodically to ensure data consistency

2.1.5.2.2. Parallel execution

In doctor’s architecture, the inspector is responsible to set error state for the affected VMs in order to notify the
consumers of such failure. This is done by calling the nova reset-state [https://developer.openstack.org/api-ref/compute/#reset-server-state-os-resetstate-action] API. However, this action is a synchronous
request with many underlying steps and cost typically hundreds of milliseconds. According to the
discussion in mailing list [https://lists.opnfv.org/pipermail/opnfv-tech-discuss/2016-October/013036.html], this time cost will grow linearly if the requests are sent one by one. It will become
a critical issue in large scale system.

It is recommended to introduce parallel execution for actions like reset-state that takes a list of targets.

2.1.5.2.3. Shortcut notification

An alternative way to improve notification performance is to take a shortcut from inspector to notifier instead of
triggering it from controller. The difference between the two workflow is shown below:

[image: conservative notification]
Conservative Notification

[image: shortcut notification]
Shortcut Notification

It worth noting that the shortcut notification has a side effect that cloud resource states could still be out-of-sync
by the time consumer processes the alarm notification. This is out of scope of inspector design but need to be taken
consideration in system level.

Also the call of “reset servers state to error” is not necessary in the alternative notification case where the “host
forced down” is still called. “get-valid-server-state” was implemented to have valid server state while earlier one
couldn’t get it unless calling “reset servers state to error”. When not having “reset servers state to error”, states
are more unlikely to be out of sync while notification and force down host would be parallel.

2.1.5.3. Appendix

A study has been made to evaluate the effect of parallel execution and shortcut notification on OPNFV Beijing Summit
2017.

[image: notification time]
Notification Time

Download the full presentation slides [https://wiki.opnfv.org/download/attachments/5046291/doctor_qtip_faster_higher_stronger.pdf] here.

2.1.6. Performance Profiler

https://goo.gl/98Osig

This blueprint proposes to create a performance profiler for doctor scenarios.

2.1.6.1. Problem Description

In the verification job for notification time, we have encountered some
performance issues, such as

1. In environment deployed by APEX, it meets the criteria while in the one by
Fuel, the performance is much more poor.
2. Signification performance degradation was spotted when we increase the total
number of VMs

It takes time to dig the log and analyse the reason. People have to collect
timestamp at each checkpoints manually to find out the bottleneck. A performance
profiler will make this process automatic.

2.1.6.2. Proposed Change

Current Doctor scenario covers the inspector and notifier in the whole fault
management cycle:

start end
 + + + + + +
 | | | | | |
 |monitor|inspector|notifier|manager|controller|
 +------>+ | | | |
occurred +-------->+ | | |
 | detected +------->+ | |
 | | identified +-------+ |
 | | notified +--------->+
 | | | processed resolved
 | | | |
 | +<-----doctor----->+ |
 | |
 | |
 +<---------------fault management------------>+

The notification time can be split into several parts and visualized as a
timeline:

start end
 0----5---10---15---20---25---30---35---40---45--> (x 10ms)
 + + + + + + + + + + +
0-hostdown | | | | | | | | |
 +--->+ | | | | | | | | |
1-raw failure							
+-->+							
	2-found affected						
	+-->+						
	3-marked host down						
	+-->+						
	4-set VM error						
	+--->+						
		5-notified VM error					
		+----->					
			6-transformed event				
			+-->+				
				7-evaluated event			
				+-->+			
				8-fired alarm			
				+-->+			
				9-received alarm			
				+-->+			
sample	sample				10-handled alarm		
monitor	inspector	nova	c/m	aodh			
 +<-----------------doctor--------------->+

Note: c/m = ceilometer

And a table of components sorted by time cost from most to least

	Component

	Time Cost

	Percentage

	inspector

	160ms

	40%

	aodh

	110ms

	30%

	monitor

	50ms

	14%

	…

	
	

	…

	
	

Note: data in the table is for demonstration only, not actual measurement

Timestamps can be collected from various sources

	log files

	trace point in code

The performance profiler will be integrated into the verification job to provide
detail result of the test. It can also be deployed independently to diagnose
performance issue in specified environment.

2.1.6.3. Working Items

	PoC with limited checkpoints

	Integration with verification job

	Collect timestamp at all checkpoints

	Display the profiling result in console

	Report the profiling result to test database

	Independent package which can be installed to specified environment

2.1.7. Planned Maintenance Design Guideline

This document describes how one can implement infrastructure maintenance in
interaction with VNFM by utilizing the OPNFV Doctor project [https://wiki.opnfv.org/doctor] framework and to
meet the set requirements. Document concentrates to OpenStack and VMs while
the concept designed is generic for any payload or even different VIM. Admin
tool should be also for controller and other cloud hardware, but that is not the
main focus in OPNFV Doctor and should be defined better in the upstream
implementation. Same goes for any more detailed work to be done.

2.1.7.1. Problem Description

Telco application need to know when infrastructure maintenance is going to happen
in order to guarantee zero down time in its operation. It needs to be possible
to make own actions to have application running on not affected resource or give
guidance to admin actions like migration. More details are defined in
requirement documentation: use cases [http://artifacts.opnfv.org/doctor/docs/requirements/02-use_cases.html#nvfi-maintenance], architecture [http://artifacts.opnfv.org/doctor/docs/requirements/03-architecture.html#nfvi-maintenance] and implementation [http://artifacts.opnfv.org/doctor/docs/requirements/05-implementation.html#nfvi-maintenance].

2.1.7.2. Guidelines

Concepts used:

	event: Notification to rabbitmq with particular event type.

	state event: Notification to rabbitmq with particular event type including
payload with variable defined for state.

	project event: Notification to rabbitmq that is meant for project. Single
event type is used with different payload and state information.

	admin event: Notification to rabbitmq that is meant for admin or as for any
infrastructure service. Single event type is used with different state
information.

	rolling maintenance: Node by Node rolling maintenance and upgrade where
a single node at a time will be maintained after a possible application
payload is moved away from the node.

	project stands for application in OpenStack contents and both are used in
this document. tenant is many times used for the same.

Infrastructure admin needs to make notification with two different event types.
One is meant for admin and one for project. Notification payload can be consumed
by application and admin by subscribing to corresponding event alarm trough
alarming service like OpenStack AODH.

	Infrastructure admin needs to make a notification about infrastructure
maintenance including all details that application needs in order to make
a decisions upon his affected service. Alarm Payload can hold a link to
infrastructure admin tool API for reply and for other possible information.
There is many steps of communication between admin tool and application, thus
the payload needed for the information passed is very similar. Because of
this, the same event type can be used, but there can be a variable like
state to tell application what is needed as action for each event.
If a project have not subscribed to alarm, admin tool responsible for the
maintenance will assume it can do maintenance operations without interaction
with application on top of it.

	Infrastructure admin needs to make an event about infrastructure maintenance
telling when the maintenance starts and another when it ends. This admin level
event should include the host name. This could be consumed by any admin level
infrastructure entity. In this document we consume this in Inspector that
is in OPNFV Doctor project [https://wiki.opnfv.org/doctor] terms infrastructure entity responsible for
automatic host fault management. Automated actions surely needs to be disabled
during planned maintenance.

Before maintenance starts application needs to be able to make switch over for
his ACT-STBY service affected, do operation to move service to not effected part
of infrastructure or give a hint for admin operation like migration that can be
automatically issued by admin tool according to agreed policy.

There should be at least one empty host compatible to host under maintenance in
order to have a smooth rolling maintenance done. For this to be possible also
down scaling the application instances should be possible.

Infrastructure admin should have a tool that is responsible for hosting a
maintenance work flow session with needed APIs for admin and for applications.
The Group of hosts in single maintenance session should always have the same
physical capabilities, so the rolling maintenance can be guaranteed.

Flow diagram is meant to be as high level as possible. It currently does not try
to be perfect, but to show the most important interfaces needed between VNFM and
infrastructure admin. This can be seen e.g. as missing error handling that can
be defined later on.

Flow diagram:

[image: Work flow in OpenStack]

Flow diagram step by step:

	Infrastructure admin makes a maintenance session to maintain and upgrade
certain group of hardware. At least compute hardware in single session should
be having same capabilities like the amount number of VCPUs to ensure
the maintenance can be done node by node in rolling fashion. Maintenance
session need to have a session_id that is a unique ID to be carried
throughout all events and can be used in APIs needed when interacting with
the session. Maintenance session needs to have knowledge about when
maintenance will start and what capabilities the possible upgrade to
infrastructure will bring to application payload on top of it. It will be
matter of the implementation to define in more detail whether some more data is
needed when creating a session or if it is defined in the admin tool
configuration.

There can be several parallel maintenance sessions and a single session can
include multiple projects payload. Typically maintenance session should include
similar type of compute hardware, so you can guarantee moving of instances on
top of them can work between the compute hosts.

	State MAINTENANCE project event and reply ACK_MAINTENANCE. Immediately
after a maintenance session is created, infrastructure admin tool will send
a project specific ‘notification’ which application manager can consume by
subscribing to AODH alarm for this event. As explained already earlier all
`project event`s will only be sent in case the project subscribes to alarm and
otherwise the interaction with application will simply not be done and
operations could be forced.

The state MAINTENANCE event should at least include:

	session_id to reference correct maintenance session.

	state as MAINTENANCE to identify event action needed.

	instance_ids to tell project which of his instances will be affected by
the maintenance. This might be a link to admin tool project specific API
as AODH variables are limited to string of 255 character.

	reply_url for application to call admin tool project specific API to
answer ACK_MAINTENANCE including the session_id.

	project_id to identify project.

	actions_at time stamp to indicate when maintenance work flow will start.
ACK_MAINTENANCE reply is needed before that time.

	metadata to include key values pairs of a capabilities coming over the
maintenance operation like ‘openstack_version’: ‘Queens’

	Optional state DOWN_SCALE project event and reply ACK_DOWN_SCALE. When it
is time to start the maintenance work flow as the time reaches the actions_at
defined in previous state event, admin tool needs to check if there is already
an empty compute host needed by the rolling maintenance. In case there is no
empty host, admin tool can ask application to down scale by sending project
specific DOWN_SCALE state event.

The state DOWN_SCALE event should at least include:

	session_id to reference correct maintenance session.

	state as DOWN_SCALE to identify event action needed.

	reply_url for application to call admin tool project specific API to
answer ACK_DOWN_SCALE including the session_id.

	project_id to identify project.

	actions_at time stamp to indicate when is the last moment to send
ACK_DOWN_SCALE. This means application can have time to finish some
ongoing transactions before down scaling his instances. This guarantees
a zero downtime for his service.

	Optional state PREPARE_MAINTENANCE project event and reply
ACK_PREPARE_MAINTENANCE. In case still after down scaling the applications
there is still no empty compute host, admin tools needs to analyze the
situation on compute host under maintenance. It needs to choose compute node
that is now almost empty or has otherwise least critical instances running if
possible, like looking if there is floating IPs. When compute host is chosen,
a PREPARE_MAINTENANCE state event can be sent to projects having instances
running on this host to migrate them to other compute hosts. It might also be
possible to have another round of DOWN_SCALE state event if necessary, but
this is not proposed here.

The state PREPARE_MAINTENANCE event should at least include:

	session_id to reference correct maintenance session.

	state as PREPARE_MAINTENANCE to identify event action needed.

	instance_ids to tell project which of his instances will be affected by
the state event. This might be a link to admin tool project specific API
as AODH variables are limited to string of 255 character.

	reply_url for application to call admin tool project specific API to
answer ACK_PREPARE_MAINTENANCE including the session_id and
instance_ids with list of key value pairs with key as instance_id and
chosen action from allowed actions given via allowed_actions as value.

	project_id to identify project.

	actions_at time stamp to indicate when is the last moment to send
ACK_PREPARE_MAINTENANCE. This means application can have time to finish
some ongoing transactions within his instances and make possible
switch over. This guarantees a zero downtime for his service.

	allowed_actions to tell what admin tool supports as action to move
instances to another compute host. Typically a list like: [‘MIGRATE’, ‘LIVE_MIGRATE’]

	Optional state INSTANCE_ACTION_DONE project event. In case admin tool needed
to make action to move instance like migrating it to another compute host, this
state event will be sent to tell the operation is complete.

The state INSTANCE_ACTION_DONE event should at least include:

	session_id to reference correct maintenance session.

	instance_ids to tell project which of his instance had the admin action
done.

	project_id to identify project.

	At this state it is guaranteed there is an empty compute host. It would be
maintained first trough IN_MAINTENANCE and MAINTENANCE_COMPLETE steps, but
following the flow chart PLANNED_MAINTENANCE will be explained next.

	Optional state PLANNED_MAINTENANCE project event and reply
ACK_PLANNED_MAINTENANCE. In case compute host to be maintained has
instances, projects owning those should have this state event. When project
receives this state event it knows instances moved to other compute host as
resulting actions will now go to host that is already maintained. This means
it might have new capabilities that project can take into use. This gives the
project the possibility to upgrade his instances also to support new
capabilities over the action chosen to move instances.

The state PLANNED_MAINTENANCE event should at least include:

	session_id to reference correct maintenance session.

	state as PLANNED_MAINTENANCE to identify event action needed.

	instance_ids to tell project which of his instances will be affected by
the event. This might be a link to admin tool project specific API as AODH
variables are limited to string of 255 character.

	reply_url for application to call admin tool project specific API to
answer ACK_PLANNED_MAINTENANCE including the session_id and
instance_ids with list of key value pairs with key as instance_id and
chosen action from allowed actions given via allowed_actions as value.

	project_id to identify project.

	actions_at time stamp to indicate when is the last moment to send
ACK_PLANNED_MAINTENANCE. This means application can have time to finish
some ongoing transactions within his instances and make possible switch
over. This guarantees a zero downtime for his service.

	allowed_actions to tell what admin tool supports as action to move
instances to another compute host. Typically a list like: [‘MIGRATE’, ‘LIVE_MIGRATE’, ‘OWN_ACTION’]
OWN_ACTION means that application may want to re-instantiate his
instance perhaps to take into use the new capability coming over the
infrastructure maintenance. Re-instantiated instance will go to already
maintained host having the new capability.

	metadata to include key values pairs of a capabilities coming over the
maintenance operation like ‘openstack_version’: ‘Queens’

	State IN_MAINTENANCE and MAINTENANCE_COMPLETE admin event`s. Just before
host goes to maintenance the IN_MAINTENANCE state event will be send to
indicate host is entering to maintenance. Host is then taken out of production
and can be powered off, replaced, or rebooted during the operation.
During the maintenance and upgrade host might be moved to admin’s own host
aggregate, so it can be tested to work before putting back to production.
After maintenance is complete MAINTENANCE_COMPLETE state event will be sent
to know host is back in use. Adding or removing of a host is yet not
included in this concept, but can be addressed later.

The state IN_MAINTENANCE and MAINTENANCE_COMPLETE event should at least
include:

	session_id to reference correct maintenance session.

	state as IN_MAINTENANCE or MAINTENANCE_COMPLETE to indicate host
state.

	project_id to identify admin project needed by AODH alarm.

	host to indicate the host name.

	State MAINTENANCE_COMPLETE project event and reply
MAINTENANCE_COMPLETE_ACK. After all compute nodes in the maintenance session
have gone trough maintenance operation this state event can be send to all
projects that had instances running on any of those nodes. If there was a down
scale done, now the application could up scale back to full operation.

	session_id to reference correct maintenance session.

	state as MAINTENANCE_COMPLETE to identify event action needed.

	instance_ids to tell project which of his instances are currently
running on hosts maintained in this maintenance session. This might be a
link to admin tool project specific API as AODH variables are limited to
string of 255 character.

	reply_url for application to call admin tool project specific API to
answer ACK_MAINTENANCE including the session_id.

	project_id to identify project.

	actions_at time stamp to indicate when maintenance work flow will start.

	metadata to include key values pairs of a capabilities coming over the
maintenance operation like ‘openstack_version’: ‘Queens’

	At the end admin tool maintenance session can enter to MAINTENANCE_COMPLETE
state and session can be removed.

2.1.7.3. Benefits

	Application is guaranteed zero downtime as it is aware of the maintenance
action affecting its payload. The application is made aware of the maintenance
time window to make sure it can prepare for it.

	Application gets to know new capabilities over infrastructure maintenance and
upgrade and can utilize those (like do its own upgrade)

	Any application supporting the interaction being defined could be running on
top of the same infrastructure provider. No vendor lock-in for application.

	Any infrastructure component can be aware of host(s) under maintenance via
`admin event`s about host state. No vendor lock-in for infrastructure
components.

	Generic messaging making it possible to use same concept in different type of
clouds and application payloads. instance_ids will uniquely identify any
type of instance and similar notification payload can be used regardless we
are in OpenStack. Work flow just need to support different cloud
infrastructure management to support different cloud.

	No additional hardware is needed during maintenance operations as down- and
up-scaling can be supported for the applications. Optional, if no extensive
spare capacity is available for the maintenance - as typically the case in
Telco environments.

	Parallel maintenance sessions for different group of hardware. Same session
should include hardware with same capabilities to guarantee rolling
maintenance actions.

	Multi-tenancy support. Project specific messaging about maintenance.

2.1.7.4. Future considerations

	Pluggable architecture for infrastructure admin tool to handle different
clouds and payloads.

	Pluggable architecture to handle specific maintenance/upgrade cases like
OpenStack upgrade between specific versions or admin testing before giving
host back to production.

	Support for user specific details need to be taken into account in admin side
actions (e.g. run a script, …).

	(Re-)Use existing implementations like Mistral for work flows.

	Scaling hardware resources. Allow critical application to be scaled at the
same time in controlled fashion or retire application.

2.1.7.4.1. POC

There was a Maintenance POC [https://youtu.be/7q496Tutzlo] demo ‘How to gain VNF zero down-time during
Infrastructure Maintenance and Upgrade’ in the OCP and ONS summit March 2018.
Similar concept is also being made as OPNFV Doctor project [https://wiki.opnfv.org/doctor] new test case
scenario.

2.1.5. Inspector Design Guideline

Note

This is spec draft of design guideline for inspector component.
JIRA ticket to track the update and collect comments: DOCTOR-73 [https://jira.opnfv.org/browse/DOCTOR-73].

This document summarize the best practise in designing a high performance
inspector to meet the requirements in OPNFV Doctor project [https://wiki.opnfv.org/doctor].

2.1.5.1. Problem Description

Some pitfalls has be detected during the development of sample inspector, e.g.
we suffered a significant performance degrading in listing VMs in a host [https://lists.opnfv.org/pipermail/opnfv-tech-discuss/2016-September/012591.html].

A patch set for caching the list [https://gerrit.opnfv.org/gerrit/#/c/20877/] has been committed to solve issue. When a
new inspector is integrated, it would be nice to have an evaluation of existing
design and give recommendations for improvements.

This document can be treated as a source of related blueprints in inspector
projects.

2.1.5.2. Guidelines

2.1.5.2.1. Host specific VMs list

While requirement in doctor project is to have alarm about fault to consumer in one second, it is just a limit we have
set in requirements. When talking about fault management in Telco, the implementation needs to be by all means optimal
and the one second is far from traditional Telco requirements.

One thing to be optimized in inspector is to eliminate the need to read list of host specific VMs from Nova API, when
it gets a host specific failure event. Optimal way of implementation would be to initialize this list when Inspector
start by reading from Nova API and after this list would be kept up-to-date by instance.update notifications
received from nova. Polling Nova API can be used as a complementary channel to make snapshot of hosts and VMs list in
order to keep the data consistent with reality.

This is enhancement and not perhaps something needed to keep under one second in a small system. Anyhow this would be
something needed in case of production use.

This guideline can be summarized as following:

	cache the host VMs mapping instead of reading it on request

	subscribe and handle update notifications to keep the list up to date

	make snapshot periodically to ensure data consistency

2.1.5.2.2. Parallel execution

In doctor’s architecture, the inspector is responsible to set error state for the affected VMs in order to notify the
consumers of such failure. This is done by calling the nova reset-state [https://developer.openstack.org/api-ref/compute/#reset-server-state-os-resetstate-action] API. However, this action is a synchronous
request with many underlying steps and cost typically hundreds of milliseconds. According to the
discussion in mailing list [https://lists.opnfv.org/pipermail/opnfv-tech-discuss/2016-October/013036.html], this time cost will grow linearly if the requests are sent one by one. It will become
a critical issue in large scale system.

It is recommended to introduce parallel execution for actions like reset-state that takes a list of targets.

2.1.5.2.3. Shortcut notification

An alternative way to improve notification performance is to take a shortcut from inspector to notifier instead of
triggering it from controller. The difference between the two workflow is shown below:

[image: conservative notification]
Conservative Notification

[image: shortcut notification]
Shortcut Notification

It worth noting that the shortcut notification has a side effect that cloud resource states could still be out-of-sync
by the time consumer processes the alarm notification. This is out of scope of inspector design but need to be taken
consideration in system level.

Also the call of “reset servers state to error” is not necessary in the alternative notification case where the “host
forced down” is still called. “get-valid-server-state” was implemented to have valid server state while earlier one
couldn’t get it unless calling “reset servers state to error”. When not having “reset servers state to error”, states
are more unlikely to be out of sync while notification and force down host would be parallel.

2.1.5.3. Appendix

A study has been made to evaluate the effect of parallel execution and shortcut notification on OPNFV Beijing Summit
2017.

[image: notification time]
Notification Time

Download the full presentation slides [https://wiki.opnfv.org/download/attachments/5046291/doctor_qtip_faster_higher_stronger.pdf] here.

2.2. Doctor: Fault Management and Maintenance

	Project

	Doctor, https://wiki.opnfv.org/doctor

	Editors

	Ashiq Khan (NTT DOCOMO), Gerald Kunzmann (NTT DOCOMO)

	Authors

	Ryota Mibu (NEC), Carlos Goncalves (NEC), Tomi Juvonen (Nokia),
Tommy Lindgren (Ericsson), Bertrand Souville (NTT DOCOMO),
Balazs Gibizer (Ericsson), Ildiko Vancsa (Ericsson) and others.

	Abstract

	Doctor is an OPNFV requirement project [DOCT]. Its scope is NFVI
fault management, and maintenance and it aims at developing and
realizing the consequent implementation for the OPNFV reference
platform.

This deliverable is introducing the use cases and operational
scenarios for Fault Management considered in the Doctor project.
From the general features, a high level architecture describing
logical building blocks and interfaces is derived. Finally,
a detailed implementation is introduced, based on available open
source components, and a related gap analysis is done as part of
this project. The implementation plan finally discusses an initial
realization for a NFVI fault management and maintenance solution in
open source software.

Definition of terms

Different SDOs and communities use different terminology related to
NFV/Cloud/SDN. This list tries to define an OPNFV terminology,
mapping/translating the OPNFV terms to terminology used in other contexts.

	ACT-STBY configuration

	Failover configuration common in Telco deployments. It enables the
operator to use a standby (STBY) instance to take over the functionality
of a failed active (ACT) instance.

	Administrator

	Administrator of the system, e.g. OAM in Telco context.

	Consumer

	User-side Manager; consumer of the interfaces produced by the VIM; VNFM,
NFVO, or Orchestrator in ETSI NFV [ENFV] terminology.

	EPC

	Evolved Packet Core, the main component of the core network architecture
of 3GPP’s LTE communication standard.

	MME

	Mobility Management Entity, an entity in the EPC dedicated to mobility
management.

	NFV

	Network Function Virtualization

	NFVI

	Network Function Virtualization Infrastructure; totality of all hardware
and software components which build up the environment in which VNFs are
deployed.

	S/P-GW

	Serving/PDN-Gateway, two entities in the EPC dedicated to routing user
data packets and providing connectivity from the UE to external packet
data networks (PDN), respectively.

	Physical resource

	Actual resources in NFVI; not visible to Consumer.

	VNFM

	Virtualized Network Function Manager; functional block that is
responsible for the lifecycle management of VNF.

	NFVO

	Network Functions Virtualization Orchestrator; functional block that
manages the Network Service (NS) lifecycle and coordinates the
management of NS lifecycle, VNF lifecycle (supported by the VNFM) and
NFVI resources (supported by the VIM) to ensure an optimized allocation
of the necessary resources and connectivity.

	VIM

	Virtualized Infrastructure Manager; functional block that is responsible
for controlling and managing the NFVI compute, storage and network
resources, usually within one operator’s Infrastructure Domain, e.g.
NFVI Point of Presence (NFVI-PoP).

	Virtual Machine (VM)

	Virtualized computation environment that behaves very much like a
physical computer/server.

	Virtual network

	Virtual network routes information among the network interfaces of VM
instances and physical network interfaces, providing the necessary
connectivity.

	Virtual resource

	A Virtual Machine (VM), a virtual network, or virtualized storage;
Offered resources to “Consumer” as result of infrastructure
virtualization; visible to Consumer.

	Virtual Storage

	Virtualized non-volatile storage allocated to a VM.

	VNF

	Virtualized Network Function. Implementation of a Network Function that
can be deployed on a Network Function Virtualization Infrastructure
(NFVI).

	2.2.1. Introduction
	2.2.1.1. Problem description

	2.2.2. Use cases and scenarios
	2.2.2.1. Faults
	2.2.2.1.1. Fault management using ACT-STBY configuration

	2.2.2.1.2. Preventive actions based on fault prediction

	2.2.2.2. NFVI Maintenance
	2.2.2.2.1. VM Retirement

	2.2.3. High level architecture and general features
	2.2.3.1. Functional overview

	2.2.3.2. Architecture Overview

	2.2.3.3. General Features and Requirements
	2.2.3.3.1. Monitoring

	2.2.3.3.2. Detection

	2.2.3.3.3. Correlation and Cognition

	2.2.3.3.4. Notification

	2.2.3.3.5. Fencing

	2.2.3.3.6. Recovery Action

	2.2.3.4. High level northbound interface specification
	2.2.3.4.1. Fault Management

	2.2.3.4.2. NFVI Maintenance

	2.2.4. Gap analysis in upstream projects
	2.2.4.1. VIM Northbound Interface
	2.2.4.1.1. Immediate Notification

	2.2.4.1.2. Maintenance Notification

	2.2.4.2. VIM Southbound interface
	2.2.4.2.1. Normalization of data collection models

	2.2.4.3. OpenStack
	2.2.4.3.1. Ceilometer
	2.2.4.3.1.1. Scalability of fault aggregation

	2.2.4.3.1.2. Monitoring of hardware and software

	2.2.4.3.2. Nova
	2.2.4.3.2.1. Correct states when compute host is down

	2.2.4.3.2.2. Evacuate VMs in Maintenance mode

	2.2.4.3.3. Monasca
	2.2.4.3.3.1. Anomaly detection

	2.2.4.3.3.2. Sensor monitoring

	2.2.4.4. Hardware monitoring tools
	2.2.4.4.1. Zabbix
	2.2.4.4.1.1. Delay in execution of actions

	2.2.5. Detailed architecture and interface specification
	2.2.5.1. Functional Blocks
	2.2.5.1.1. Monitor

	2.2.5.1.2. Inspector

	2.2.5.1.3. Controller

	2.2.5.1.4. Notifier

	2.2.5.2. Sequence
	2.2.5.2.1. Fault Management

	2.2.5.2.2. NFVI Maintenance

	2.2.5.3. Information elements

	2.2.5.4. Detailed northbound interface specification
	2.2.5.4.1. Fault management interface
	2.2.5.4.1.1. SubscribeRequest (Consumer -> VIM)

	2.2.5.4.1.2. SubscribeResponse (VIM -> Consumer)

	2.2.5.4.1.3. FaultNotification (VIM -> Consumer)

	2.2.5.4.1.4. FaultQueryRequest (Consumer -> VIM)

	2.2.5.4.1.5. FaultQueryResponse (VIM -> Consumer)

	2.2.5.4.2. NFVI maintenance
	2.2.5.4.2.1. SubscribeRequest (Consumer -> VIM)

	2.2.5.4.2.2. SubscribeResponse (VIM -> Consumer)

	2.2.5.4.2.3. MaintenanceNotification (VIM -> Consumer)

	2.2.5.4.2.4. StateChangeRequest (Administrator -> VIM)

	2.2.5.4.2.5. StateChangeResponse (VIM -> Administrator)

	2.2.5.4.2.6. StateQueryRequest (Administrator -> VIM)

	2.2.5.4.2.7. StateQueryResponse (VIM -> Administrator)

	2.2.5.4.3. NFV IFA, OPNFV Doctor and AODH alarms

	2.2.5.5. Detailed southbound interface specification
	2.2.5.5.1. Fault event interface
	2.2.5.5.1.1. EventNotification

	2.2.5.6. Blueprints
	2.2.5.6.1. Instance State Notification (Ceilometer)

	2.2.5.6.2. Event Publisher for Alarm (Ceilometer)

	2.2.5.6.3. Notification-driven alarm evaluator (Ceilometer)

	2.2.5.6.4. Report host fault to update server state immediately (Nova)

	2.2.5.6.5. Other related BPs
	2.2.5.6.5.1. pacemaker-servicegroup-driver

	2.2.6. Summary and conclusion

	2.2.7. Annex: NFVI Faults

2.2.8. References and bibliography

	DOCT

	OPNFV, “Doctor” requirements project, [Online]. Available at
https://wiki.opnfv.org/doctor

	PRED

	OPNFV, “Data Collection for Failure Prediction” requirements project
[Online]. Available at https://wiki.opnfv.org/prediction

	OPSK

	OpenStack, [Online]. Available at https://www.openstack.org/

	CEIL

	OpenStack Telemetry (Ceilometer), [Online]. Available at
https://wiki.openstack.org/wiki/Ceilometer

	NOVA

	OpenStack Nova, [Online]. Available at
https://wiki.openstack.org/wiki/Nova

	NEUT

	OpenStack Neutron, [Online]. Available at
https://wiki.openstack.org/wiki/Neutron

	CIND

	OpenStack Cinder, [Online]. Available at
https://wiki.openstack.org/wiki/Cinder

	MONA

	OpenStack Monasca, [Online], Available at
https://wiki.openstack.org/wiki/Monasca

	OSAG

	OpenStack Cloud Administrator Guide, [Online]. Available at
http://docs.openstack.org/admin-guide-cloud/content/

	ZABB

	ZABBIX, the Enterprise-class Monitoring Solution for Everyone,
[Online]. Available at http://www.zabbix.com/

	ENFV

	ETSI NFV, [Online]. Available at
http://www.etsi.org/technologies-clusters/technologies/nfv

2.2.1. Introduction

The goal of this project is to build an NFVI fault management and maintenance
framework supporting high availability of the Network Services on top of the
virtualized infrastructure. The key feature is immediate notification of
unavailability of virtualized resources from VIM, to support failure recovery,
or failure avoidance of VNFs running on them. Requirement survey and development
of missing features in NFVI and VIM are in scope of this project in order to
fulfil requirements for fault management and maintenance in NFV.

The purpose of this requirement project is to clarify the necessary features of
NFVI fault management, and maintenance, identify missing features in the current
OpenSource implementations, provide a potential implementation architecture and
plan, provide implementation guidelines in relevant upstream projects to realize
those missing features, and define the VIM northbound interfaces necessary to
perform the task of NFVI fault management, and maintenance in alignment with
ETSI NFV [ENFV].

2.2.1.1. Problem description

A Virtualized Infrastructure Manager (VIM), e.g. OpenStack [OPSK], cannot
detect certain Network Functions Virtualization Infrastructure (NFVI) faults.
This feature is necessary to detect the faults and notify the Consumer in order
to ensure the proper functioning of EPC VNFs like MME and S/P-GW.

	EPC VNFs are often in active standby (ACT-STBY) configuration and need to
switch from STBY mode to ACT mode as soon as relevant faults are detected in
the active (ACT) VNF.

	NFVI encompasses all elements building up the environment in which VNFs are
deployed, e.g., Physical Machines, Hypervisors, Storage, and Network elements.

In addition, VIM, e.g. OpenStack, needs to receive maintenance instructions from
the Consumer, i.e. the operator/administrator of the VNF.

	Change the state of certain Physical Machines (PMs), e.g. empty the PM, so
that maintenance work can be performed at these machines.

Note: Although fault management and maintenance are different operations in NFV,
both are considered as part of this project as – except for the trigger – they
share a very similar work and message flow. Hence, from implementation
perspective, these two are kept together in the Doctor project because of this
high degree of similarity.

2.2.2. Use cases and scenarios

Telecom services often have very high requirements on service performance. As a
consequence they often utilize redundancy and high availability (HA) mechanisms
for both the service and the platform. The HA support may be built-in or
provided by the platform. In any case, the HA support typically has a very fast
detection and reaction time to minimize service impact. The main changes
proposed in this document are about making a clear distinction between fault
management and recovery a) within the VIM/NFVI and b) High Availability support
for VNFs on the other, claiming that HA support within a VNF or as a service
from the platform is outside the scope of Doctor and is discussed in the High
Availability for OPNFV project. Doctor should focus on detecting and remediating
faults in the NFVI. This will ensure that applications come back to a fully
redundant configuration faster than before.

As an example, Telecom services can come with an Active-Standby (ACT-STBY)
configuration which is a (1+1) redundancy scheme. ACT and STBY nodes (aka
Physical Network Function (PNF) in ETSI NFV terminology) are in a hot standby
configuration. If an ACT node is unable to function properly due to fault or any
other reason, the STBY node is instantly made ACT, and affected services can be
provided without any service interruption.

The ACT-STBY configuration needs to be maintained. This means, when a STBY node
is made ACT, either the previously ACT node, after recovery, shall be made STBY,
or, a new STBY node needs to be configured. The actual operations to
instantiate/configure a new STBY are similar to instantiating a new VNF and
therefore are outside the scope of this project.

The NFVI fault management and maintenance requirements aim at providing fast
failure detection of physical and virtualized resources and remediation of the
virtualized resources provided to Consumers according to their predefined
request to enable applications to recover to a fully redundant mode of
operation.

	Fault management/recovery using ACT-STBY configuration (Triggered by critical
error)

	Preventive actions based on fault prediction (Preventing service stop by
handling warnings)

	VM Retirement (Managing service during NFVI maintenance, i.e. H/W,
Hypervisor, Host OS, maintenance)

2.2.2.1. Faults

2.2.2.1.1. Fault management using ACT-STBY configuration

In figure1, a system-wide view of relevant functional blocks is
presented. OpenStack is considered as the VIM implementation (aka Controller)
which has interfaces with the NFVI and the Consumers. The VNF implementation is
represented as different virtual resources marked by different colors. Consumers
(VNFM or NFVO in ETSI NFV terminology) own/manage the respective virtual
resources (VMs in this example) shown with the same colors.

The first requirement in this use case is that the Controller needs to detect
faults in the NFVI (“1. Fault Notification” in figure1) affecting
the proper functioning of the virtual resources (labelled as VM-x) running on
top of it. It should be possible to configure which relevant fault items should
be detected. The VIM (e.g. OpenStack) itself could be extended to detect such
faults. Alternatively, a third party fault monitoring tool could be used which
then informs the VIM about such faults; this third party fault monitoring
element can be considered as a component of VIM from an architectural point of
view.

Once such fault is detected, the VIM shall find out which virtual resources are
affected by this fault. In the example in figure1, VM-4 is
affected by a fault in the Hardware Server-3. Such mapping shall be maintained
in the VIM, depicted as the “Server-VM info” table inside the VIM.

Once the VIM has identified which virtual resources are affected by the fault,
it needs to find out who is the Consumer (i.e. the owner/manager) of the
affected virtual resources (Step 2). In the example shown in figure1,
the VIM knows that for the red VM-4, the manager is the red Consumer
through an Ownership info table. The VIM then notifies (Step 3 “Fault
Notification”) the red Consumer about this fault, preferably with sufficient
abstraction rather than detailed physical fault information.

[image: ../../_images/figure1.png]
Fault management/recovery use case

The Consumer then switches to STBY configuration by switching the STBY node to
ACT state (Step 4). It further initiates a process to instantiate/configure a
new STBY. However, switching to STBY mode and creating a new STBY machine is a
VNFM/NFVO level operation and therefore outside the scope of this project.
Doctor project does not create interfaces for such VNFM level configuration
operations. Yet, since the total failover time of a consumer service depends on
both the delay of such processes as well as the reaction time of Doctor
components, minimizing Doctor’s reaction time is a necessary basic ingredient to
fast failover times in general.

Once the Consumer has switched to STBY configuration, it notifies (Step 5
“Instruction” in figure1) the VIM. The VIM can then take
necessary (e.g. pre-determined by the involved network operator) actions on how
to clean up the fault affected VMs (Step 6 “Execute Instruction”).

The key issue in this use case is that a VIM (OpenStack in this context) shall
not take a standalone fault recovery action (e.g. migration of the affected VMs)
before the ACT-STBY switching is complete, as that might violate the ACT-STBY
configuration and render the node out of service.

As an extension of the 1+1 ACT-STBY resilience pattern, a STBY instance can act as
backup to N ACT nodes (N+1). In this case, the basic information flow remains
the same, i.e., the consumer is informed of a failure in order to activate the
STBY node. However, in this case it might be useful for the failure notification
to cover a number of failed instances due to the same fault (e.g., more than one
instance might be affected by a switch failure). The reaction of the consumer
might depend on whether only one active instance has failed (similar to the
ACT-STBY case), or if more active instances are needed as well.

2.2.2.1.2. Preventive actions based on fault prediction

The fault management scenario explained in Fault management using ACT-STBY configuration can also be
performed based on fault prediction. In such cases, in VIM, there is an
intelligent fault prediction module which, based on its NFVI monitoring
information, can predict an imminent fault in the elements of NFVI.
A simple example is raising temperature of a Hardware Server which might
trigger a pre-emptive recovery action. The requirements of such fault
prediction in the VIM are investigated in the OPNFV project “Data Collection
for Failure Prediction” [PRED].

This use case is very similar to Fault management using ACT-STBY configuration. Instead of a fault
detection (Step 1 “Fault Notification in” figure1), the trigger
comes from a fault prediction module in the VIM, or from a third party module
which notifies the VIM about an imminent fault. From Step 2~5, the work flow is
the same as in the “Fault management using ACT-STBY configuration” use case,
except in this case, the Consumer of a VM/VNF switches to STBY configuration
based on a predicted fault, rather than an occurred fault.

2.2.2.2. NFVI Maintenance

2.2.2.2.1. VM Retirement

All network operators perform maintenance of their network infrastructure, both
regularly and irregularly. Besides the hardware, virtualization is expected to
increase the number of elements subject to such maintenance as NFVI holds new
elements like the hypervisor and host OS. Maintenance of a particular resource
element e.g. hardware, hypervisor etc. may render a particular server hardware
unusable until the maintenance procedure is complete.

However, the Consumer of VMs needs to know that such resources will be
unavailable because of NFVI maintenance. The following use case is again to
ensure that the ACT-STBY configuration is not violated. A stand-alone action
(e.g. live migration) from VIM/OpenStack to empty a physical machine so that
consequent maintenance procedure could be performed may not only violate the
ACT-STBY configuration, but also have impact on real-time processing scenarios
where dedicated resources to virtual resources (e.g. VMs) are necessary and a
pause in operation (e.g. vCPU) is not allowed. The Consumer is in a position to
safely perform the switch between ACT and STBY nodes, or switch to an
alternative VNF forwarding graph so the hardware servers hosting the ACT nodes
can be emptied for the upcoming maintenance operation. Once the target hardware
servers are emptied (i.e. no virtual resources are running on top), the VIM can
mark them with an appropriate flag (i.e. “maintenance” state) such that these
servers are not considered for hosting of virtual machines until the maintenance
flag is cleared (i.e. nodes are back in “normal” status).

A high-level view of the maintenance procedure is presented in figure2.
VIM/OpenStack, through its northbound interface, receives a maintenance notification
(Step 1 “Maintenance Request”) from the Administrator (e.g. a network operator)
including information about which hardware is subject to maintenance.
Maintenance operations include replacement/upgrade of hardware,
update/upgrade of the hypervisor/host OS, etc.

The consequent steps to enable the Consumer to perform ACT-STBY switching are
very similar to the fault management scenario. From VIM/OpenStack’s internal
database, it finds out which virtual resources (VM-x) are running on those
particular Hardware Servers and who are the managers of those virtual resources
(Step 2). The VIM then informs the respective Consumer (VNFMs or NFVO) in Step 3
“Maintenance Notification”. Based on this, the Consumer takes necessary actions
(Step 4, e.g. switch to STBY configuration or switch VNF forwarding graphs) and
then notifies (Step 5 “Instruction”) the VIM. Upon receiving such notification,
the VIM takes necessary actions (Step 6 “Execute Instruction” to empty the
Hardware Servers so that consequent maintenance operations could be performed.
Due to the similarity for Steps 2~6, the maintenance procedure and the fault
management procedure are investigated in the same project.

[image: ../../_images/figure2.png]
Maintenance use case

2.2.3. High level architecture and general features

2.2.3.1. Functional overview

The Doctor project circles around two distinct use cases: 1) management of
failures of virtualized resources and 2) planned maintenance, e.g. migration, of
virtualized resources. Both of them may affect a VNF/application and the network
service it provides, but there is a difference in frequency and how they can be
handled.

Failures are spontaneous events that may or may not have an impact on the
virtual resources. The Consumer should as soon as possible react to the failure,
e.g., by switching to the STBY node. The Consumer will then instruct the VIM on
how to clean up or repair the lost virtual resources, i.e. restore the VM, VLAN
or virtualized storage. How much the applications are affected varies.
Applications with built-in HA support might experience a short decrease in
retainability (e.g. an ongoing session might be lost) while keeping availability
(establishment or re-establishment of sessions are not affected), whereas the
impact on applications without built-in HA may be more serious. How much the
network service is impacted depends on how the service is implemented. With
sufficient network redundancy the service may be unaffected even when a specific
resource fails.

On the other hand, planned maintenance impacting virtualized resources are events
that are known in advance. This group includes e.g. migration due to software
upgrades of OS and hypervisor on a compute host. Some of these might have been
requested by the application or its management solution, but there is also a
need for coordination on the actual operations on the virtual resources. There
may be an impact on the applications and the service, but since they are not
spontaneous events there is room for planning and coordination between the
application management organization and the infrastructure management
organization, including performing whatever actions that would be required to
minimize the problems.

Failure prediction is the process of pro-actively identifying situations that
may lead to a failure in the future unless acted on by means of maintenance
activities. From applications’ point of view, failure prediction may impact them
in two ways: either the warning time is so short that the application or its
management solution does not have time to react, in which case it is equal to
the failure scenario, or there is sufficient time to avoid the consequences by
means of maintenance activities, in which case it is similar to planned
maintenance.

2.2.3.2. Architecture Overview

NFV and the Cloud platform provide virtual resources and related control
functionality to users and administrators. figure3 shows the high
level architecture of NFV focusing on the NFVI, i.e., the virtualized
infrastructure. The NFVI provides virtual resources, such as virtual machines
(VM) and virtual networks. Those virtual resources are used to run applications,
i.e. VNFs, which could be components of a network service which is managed by
the consumer of the NFVI. The VIM provides functionalities of controlling and
viewing virtual resources on hardware (physical) resources to the consumers,
i.e., users and administrators. OpenStack is a prominent candidate for this VIM.
The administrator may also directly control the NFVI without using the VIM.

Although OpenStack is the target upstream project where the new functional
elements (Controller, Notifier, Monitor, and Inspector) are expected to be
implemented, a particular implementation method is not assumed. Some of these
elements may sit outside of OpenStack and offer a northbound interface to
OpenStack.

2.2.3.3. General Features and Requirements

The following features are required for the VIM to achieve high availability of
applications (e.g., MME, S/P-GW) and the Network Services:

	Monitoring: Monitor physical and virtual resources.

	Detection: Detect unavailability of physical resources.

	Correlation and Cognition: Correlate faults and identify affected virtual
resources.

	Notification: Notify unavailable virtual resources to their Consumer(s).

	Fencing: Shut down or isolate a faulty resource.

	Recovery action: Execute actions to process fault recovery and maintenance.

The time interval between the instant that an event is detected by the
monitoring system and the Consumer notification of unavailable resources shall
be < 1 second (e.g., Step 1 to Step 4 in figure4).

[image: ../../_images/figure3.png]
High level architecture

2.2.3.3.1. Monitoring

The VIM shall monitor physical and virtual resources for unavailability and
suspicious behavior.

2.2.3.3.2. Detection

The VIM shall detect unavailability and failures of physical resources that
might cause errors/faults in virtual resources running on top of them.
Unavailability of physical resource is detected by various monitoring and
managing tools for hardware and software components. This may include also
predicting upcoming faults. Note, fault prediction is out of scope of this
project and is investigated in the OPNFV “Data Collection for Failure
Prediction” project [PRED].

The fault items/events to be detected shall be configurable.

The configuration shall enable Failure Selection and Aggregation. Failure
aggregation means the VIM determines unavailability of physical resource from
more than two non-critical failures related to the same resource.

There are two types of unavailability - immediate and future:

	Immediate unavailability can be detected by setting traps of raw failures on
hardware monitoring tools.

	Future unavailability can be found by receiving maintenance instructions
issued by the administrator of the NFVI or by failure prediction mechanisms.

2.2.3.3.3. Correlation and Cognition

The VIM shall correlate each fault to the impacted virtual resource, i.e., the
VIM shall identify unavailability of virtualized resources that are or will be
affected by failures on the physical resources under them. Unavailability of a
virtualized resource is determined by referring to the mapping of physical and
virtualized resources.

VIM shall allow configuration of fault correlation between physical and
virtual resources. VIM shall support correlating faults:

	between a physical resource and another physical resource

	between a physical resource and a virtual resource

	between a virtual resource and another virtual resource

Failure aggregation is also required in this feature, e.g., a user may request
to be only notified if failures on more than two standby VMs in an (N+M)
deployment model occurred.

2.2.3.3.4. Notification

The VIM shall notify the alarm, i.e., unavailability of virtual resource(s), to
the Consumer owning it over the northbound interface, such that the Consumers
impacted by the failure can take appropriate actions to recover from the
failure.

The VIM shall also notify the unavailability of physical resources to its
Administrator.

All notifications shall be transferred immediately in order to minimize the
stalling time of the network service and to avoid over assignment caused by
delay of capability updates.

There may be multiple consumers, so the VIM has to find out the owner of a
faulty resource. Moreover, there may be a large number of virtual and physical
resources in a real deployment, so polling the state of all resources to the VIM
would lead to heavy signaling traffic. Thus, a publication/subscription
messaging model is better suited for these notifications, as notifications are
only sent to subscribed consumers.

Notifications will be send out along with the configuration by the consumer.
The configuration includes endpoint(s) in which the consumers can specify
multiple targets for the notification subscription, so that various and
multiple receiver functions can consume the notification message.
Also, the conditions for notifications shall be configurable, such that
the consumer can set according policies, e.g. whether it wants to receive
fault notifications or not.

Note: the VIM should only accept notification subscriptions for each resource
by its owner or administrator.
Notifications to the Consumer about the unavailability of virtualized
resources will include a description of the fault, preferably with sufficient
abstraction rather than detailed physical fault information.

2.2.3.3.5. Fencing

Recovery actions, e.g. safe VM evacuation, have to be preceded by fencing the
failed host. Fencing hereby means to isolate or shut down a faulty resource.
Without fencing – when the perceived disconnection is due to some transient
or partial failure – the evacuation might lead into two identical instances
running together and having a dangerous conflict.

There is a cross-project definition in OpenStack of how to implement
fencing, but there has not been any progress. The general description is
available here:
https://wiki.openstack.org/wiki/Fencing_Instances_of_an_Unreachable_Host

OpenStack provides some mechanisms that allow fencing of faulty resources. Some
are automatically invoked by the platform itself (e.g. Nova disables the
compute service when libvirtd stops running, preventing new VMs to be scheduled
to that node), while other mechanisms are consumer trigger-based actions (e.g.
Neutron port admin-state-up). For other fencing actions not supported by
OpenStack, the Doctor project may suggest ways to address the gap (e.g. through
means of resourcing to external tools and orchestration methods), or
documenting or implementing them upstream.

The Doctor Inspector component will be responsible of marking resources down in
the OpenStack and back up if necessary.

2.2.3.3.6. Recovery Action

In the basic Fault management using ACT-STBY configuration use case, no automatic actions will be taken by
the VIM, but all recovery actions executed by the VIM and the NFVI will be
instructed and coordinated by the Consumer.

In a more advanced use case, the VIM may be able to recover the failed virtual
resources according to a pre-defined behavior for that resource. In principle
this means that the owner of the resource (i.e., its consumer or administrator)
can define which recovery actions shall be taken by the VIM. Examples are a
restart of the VM or migration/evacuation of the VM.

2.2.3.4. High level northbound interface specification

2.2.3.4.1. Fault Management

This interface allows the Consumer to subscribe to fault notification from the
VIM. Using a filter, the Consumer can narrow down which faults should be
notified. A fault notification may trigger the Consumer to switch from ACT to
STBY configuration and initiate fault recovery actions. A fault query
request/response message exchange allows the Consumer to find out about active
alarms at the VIM. A filter can be used to narrow down the alarms returned in
the response message.

[image: ../../_images/figure4.png]
High-level message flow for fault management

The high level message flow for the fault management use case is shown in
figure4.
It consists of the following steps:

	The VIM monitors the physical and virtual resources and the fault management
workflow is triggered by a monitored fault event.

	Event correlation, fault detection and aggregation in VIM. Note: this may
also happen after Step 3.

	Database lookup to find the virtual resources affected by the detected fault.

	Fault notification to Consumer.

	The Consumer switches to standby configuration (STBY).

	Instructions to VIM requesting certain actions to be performed on the
affected resources, for example migrate/update/terminate specific
resource(s). After reception of such instructions, the VIM is executing the
requested action, e.g., it will migrate or terminate a virtual resource.

2.2.3.4.2. NFVI Maintenance

The NFVI maintenance interface allows the Administrator to notify the VIM about
a planned maintenance operation on the NFVI. A maintenance operation may for
example be an update of the server firmware or the hypervisor. The
MaintenanceRequest message contains instructions to change the state of the
physical resource from ‘enabled’ to ‘going-to-maintenance’ and a timeout 1.
After receiving the MaintenanceRequest,the VIM decides on the actions to be taken
based on maintenance policies predefined by the affected Consumer(s).

	1

	Timeout is set by the Administrator and corresponds to the maximum time
to empty the physical resources.

[image: ../../_images/figure5a.png]
High-level message flow for maintenance policy enforcement

The high level message flow for the NFVI maintenance policy enforcement is shown
in figure5a. It consists of the following steps:

	Maintenance trigger received from Administrator.

	VIM switches the affected physical resources to “going-to-maintenance” state e.g. so that no new
VM will be scheduled on the physical servers.

	Database lookup to find the Consumer(s) and virtual resources affected by the maintenance
operation.

	Maintenance policies are enforced in the VIM, e.g. affected VM(s) are shut down
on the physical server(s), or affected Consumer(s) are notified about the planned
maintenance operation (steps 4a/4b).

Once the affected Consumer(s) have been notified, they take specific actions (e.g. switch to standby
(STBY) configuration, request to terminate the virtual resource(s)) to allow the maintenance
action to be executed. After the physical resources have been emptied, the VIM puts the physical
resources in “in-maintenance” state and sends a MaintenanceResponse back to the Administrator.

[image: ../../_images/figure5b.png]
Successful NFVI maintenance

The high level message flow for a successful NFVI maintenance is show in figure5b.
It consists of the following steps:

	The Consumer C3 switches to standby configuration (STBY).

	Instructions from Consumers C2/C3 are shared to VIM requesting certain actions to be performed
(steps 6a, 6b). After receiving such instructions, the VIM executes the requested
action in order to empty the physical resources (step 6c) and informs the
Consumer about the result of the actions (steps 6d, 6e).

	The VIM switches the physical resources to “in-maintenance” state

	Maintenance response is sent from VIM to inform the Administrator that the physical
servers have been emptied.

	The Administrator is coordinating and executing the maintenance
operation/work on the NFVI. Note: this step is out of scope of Doctor project.

The requested actions to empty the physical resources may not be successful (e.g. migration fails
or takes too long) and in such a case, the VIM puts the physical resources back to ‘enabled’ and
informs the Administrator about the problem.

[image: ../../_images/figure5c.png]
Example of failed NFVI maintenance

An example of a high level message flow to cover the failed NFVI maintenance case is
shown in figure5c.
It consists of the following steps:

	The Consumer C3 switches to standby configuration (STBY).

	Instructions from Consumers C2/C3 are shared to VIM requesting certain actions to be performed
(steps 6a, 6b). The VIM executes the requested actions and sends back a NACK to consumer C2
(step 6d) as the migration of the virtual resource(s) is not completed by the given timeout.

	The VIM switches the physical resources to “enabled” state.

	MaintenanceNotification is sent from VIM to inform the Administrator that the maintenance action
cannot start.

2.2.4. Gap analysis in upstream projects

This section presents the findings of gaps on existing VIM platforms. The focus
was to identify gaps based on the features and requirements specified in Section
3.3. The analysis work determined gaps that are presented here.

2.2.4.1. VIM Northbound Interface

2.2.4.1.1. Immediate Notification

	Type: ‘deficiency in performance’

	Description

	To-be

	VIM has to notify unavailability of virtual resource (fault) to VIM user
immediately.

	Notification should be passed in ‘1 second’ after fault detected/notified
by VIM.

	Also, the following conditions/requirement have to be met:

	Only the owning user can receive notification of fault related to owned
virtual resource(s).

	As-is

	OpenStack Metering ‘Ceilometer’ can notify unavailability of virtual
resource (fault) to the owner of virtual resource based on alarm
configuration by the user.

	Ceilometer Alarm API:
http://docs.openstack.org/developer/ceilometer/webapi/v2.html#alarms

	Alarm notifications are triggered by alarm evaluator instead of
notification agents that might receive faults

	Ceilometer Architecture:
http://docs.openstack.org/developer/ceilometer/architecture.html#id1

	Evaluation interval should be equal to or larger than configured pipeline
interval for collection of underlying metrics.

	https://github.com/openstack/ceilometer/blob/stable/juno/ceilometer/alarm/service.py#L38-42

	The interval for collection has to be set large enough which depends on
the size of the deployment and the number of metrics to be collected.

	The interval may not be less than one second in even small deployments.
The default value is 60 seconds.

	Alternative: OpenStack has a message bus to publish system events.
The operator can allow the user to connect this, but there are no
functions to filter out other events that should not be passed to the user
or which were not requested by the user.

	Gap

	Fault notifications cannot be received immediately by Ceilometer.

	Solved by

	Event Alarm Evaluator:
https://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-evaluator.html

	New OpenStack alarms and notifications project AODH:
http://docs.openstack.org/developer/aodh/

2.2.4.1.2. Maintenance Notification

	Type: ‘missing’

	Description

	To-be

	VIM has to notify unavailability of virtual resource triggered by NFVI
maintenance to VIM user.

	Also, the following conditions/requirements have to be met:

	VIM should accept maintenance message from administrator and mark target
physical resource “in maintenance”.

	Only the owner of virtual resource hosted by target physical resource
can receive the notification that can trigger some process for
applications which are running on the virtual resource (e.g. cut off
VM).

	As-is

	OpenStack: None

	AWS (just for study)

	AWS provides API and CLI to view status of resource (VM) and to create
instance status and system status alarms to notify you when an instance
has a failed status check.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html

	AWS provides API and CLI to view scheduled events, such as a reboot or
retirement, for your instances. Also, those events will be notified
via e-mail.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html

	Gap

	VIM user cannot receive maintenance notifications.

	Solved by

	https://blueprints.launchpad.net/nova/+spec/service-status-notification

2.2.4.2. VIM Southbound interface

2.2.4.2.1. Normalization of data collection models

	Type: ‘missing’

	Description

	To-be

	A normalized data format needs to be created to cope with the many data
models from different monitoring solutions.

	As-is

	Data can be collected from many places (e.g. Zabbix, Nagios, Cacti,
Zenoss). Although each solution establishes its own data models, no common
data abstraction models exist in OpenStack.

	Gap

	Normalized data format does not exist.

	Solved by

	Specification in Section Detailed southbound interface specification.

2.2.4.3. OpenStack

2.2.4.3.1. Ceilometer

OpenStack offers a telemetry service, Ceilometer, for collecting measurements of
the utilization of physical and virtual resources [CEIL]. Ceilometer can
collect a number of metrics across multiple OpenStack components and watch for
variations and trigger alarms based upon the collected data.

2.2.4.3.1.1. Scalability of fault aggregation

	Type: ‘scalability issue’

	Description

	To-be

	Be able to scale to a large deployment, where thousands of monitoring
events per second need to be analyzed.

	As-is

	Performance issue when scaling to medium-sized deployments.

	Gap

	Ceilometer seems to be unsuitable for monitoring medium and large scale
NFVI deployments.

	Solved by

	Usage of Zabbix for fault aggregation [ZABB]. Zabbix can support a much
higher number of fault events (up to 15 thousand events per second, but
obviously also has some upper bound:
http://blog.zabbix.com/scalable-zabbix-lessons-on-hitting-9400-nvps/2615/

	Decentralized/hierarchical deployment with multiple instances, where one
instance is only responsible for a small NFVI.

2.2.4.3.1.2. Monitoring of hardware and software

	Type: ‘missing (lack of functionality)’

	Description

	To-be

	OpenStack (as VIM) should monitor various hardware and software in NFVI to
handle faults on them by Ceilometer.

	OpenStack may have monitoring functionality in itself and can be
integrated with third party monitoring tools.

	OpenStack need to be able to detect the faults listed in the Annex.

	As-is

	For each deployment of OpenStack, an operator has responsibility to
configure monitoring tools with relevant scripts or plugins in order to
monitor hardware and software.

	OpenStack Ceilometer does not monitor hardware and software to capture
faults.

	Gap

	Ceilometer is not able to detect and handle all faults listed in the Annex.

	Solved by

	Use of dedicated monitoring tools like Zabbix or Monasca.
See Annex: NFVI Faults.

2.2.4.3.2. Nova

OpenStack Nova [NOVA] is a mature and widely known and used component in
OpenStack cloud deployments. It is the main part of an
“infrastructure-as-a-service” system providing a cloud computing fabric
controller, supporting a wide diversity of virtualization and container
technologies.

Nova has proven throughout these past years to be highly available and
fault-tolerant. Featuring its own API, it also provides a compatibility API with
Amazon EC2 APIs.

2.2.4.3.2.1. Correct states when compute host is down

	Type: ‘missing (lack of functionality)’

	Description

	To-be

	The API shall support to change VM power state in case host has failed.

	The API shall support to change nova-compute state.

	There could be single API to change different VM states for all VMs
belonging to a specific host.

	Support external systems that are monitoring the infrastructure and resources
that are able to call the API fast and reliable.

	Resource states are reliable such that correlation actions can be fast and automated.

	User shall be able to read states from OpenStack and trust they are correct.

	As-is

	When a VM goes down due to a host HW, host OS or hypervisor failure,
nothing happens in OpenStack. The VMs of a crashed host/hypervisor are
reported to be live and OK through the OpenStack API.

	nova-compute state might change too slowly or the state is not reliable
if expecting also VMs to be down. This leads to ability to schedule VMs
to a failed host and slowness blocks evacuation.

	Gap

	OpenStack does not change its states fast and reliably enough.

	The API does not support to have an external system to change states and to
trust the states are reliable (external system has fenced failed host).

	User cannot read all the states from OpenStack nor trust they are right.

	Solved by

	https://blueprints.launchpad.net/nova/+spec/mark-host-down

	https://blueprints.launchpad.net/python-novaclient/+spec/support-force-down-service

2.2.4.3.2.2. Evacuate VMs in Maintenance mode

	Type: ‘missing’

	Description

	To-be

	When maintenance mode for a compute host is set, trigger VM evacuation to
available compute nodes before bringing the host down for maintenance.

	As-is

	If setting a compute node to a maintenance mode, OpenStack only schedules
evacuation of all VMs to available compute nodes if in-maintenance compute
node runs the XenAPI and VMware ESX hypervisors. Other hypervisors (e.g.
KVM) are not supported and, hence, guest VMs will likely stop running due
to maintenance actions administrator may perform (e.g. hardware upgrades,
OS updates).

	Gap

	Nova libvirt hypervisor driver does not implement automatic guest VMs
evacuation when compute nodes are set to maintenance mode ($ nova
host-update --maintenance enable <hostname>).

2.2.4.3.3. Monasca

Monasca is an open-source monitoring-as-a-service (MONaaS) solution that
integrates with OpenStack. Even though it is still in its early days, it is the
interest of the community that the platform be multi-tenant, highly scalable,
performant and fault-tolerant. It provides a streaming alarm engine, a
notification engine, and a northbound REST API users can use to interact with
Monasca. Hundreds of thousands of metrics per second can be processed
[MONA].

2.2.4.3.3.1. Anomaly detection

	Type: ‘missing (lack of functionality)’

	Description

	To-be

	Detect the failure and perform a root cause analysis to filter out other
alarms that may be triggered due to their cascading relation.

	As-is

	A mechanism to detect root causes of failures is not available.

	Gap

	Certain failures can trigger many alarms due to their dependency on the
underlying root cause of failure. Knowing the root cause can help filter
out unnecessary and overwhelming alarms.

	Status

	Monasca as of now lacks this feature, although the community is aware and
working toward supporting it.

2.2.4.3.3.2. Sensor monitoring

	Type: ‘missing (lack of functionality)’

	Description

	To-be

	It should support monitoring sensor data retrieval, for instance, from
IPMI.

	As-is

	Monasca does not monitor sensor data

	Gap

	Sensor monitoring is very important. It provides operators status
on the state of the physical infrastructure (e.g. temperature, fans).

	Addressed by

	Monasca can be configured to use third-party monitoring solutions (e.g.
Nagios, Cacti) for retrieving additional data.

2.2.4.4. Hardware monitoring tools

2.2.4.4.1. Zabbix

Zabbix is an open-source solution for monitoring availability and performance of
infrastructure components (i.e. servers and network devices), as well as
applications [ZABB]. It can be customized for use with OpenStack. It is a
mature tool and has been proven to be able to scale to large systems with
100,000s of devices.

2.2.4.4.1.1. Delay in execution of actions

	Type: ‘deficiency in performance’

	Description

	To-be

	After detecting a fault, the monitoring tool should immediately execute
the appropriate action, e.g. inform the manager through the NB I/F

	As-is

	A delay of around 10 seconds was measured in two independent testbed
deployments

	Gap

	Cause of the delay is a periodic evaluation and notification. Periodicity is configured
as 30s default value and can be reduced to 5s but not below.
https://github.com/zabbix/zabbix/blob/trunk/conf/zabbix_server.conf#L329

2.2.5. Detailed architecture and interface specification

This section describes a detailed implementation plan, which is based on the
high level architecture introduced in Section 3. Section 5.1 describes the
functional blocks of the Doctor architecture, which is followed by a high level
message flow in Section 5.2. Section 5.3 provides a mapping of selected existing
open source components to the building blocks of the Doctor architecture.
Thereby, the selection of components is based on their maturity and the gap
analysis executed in Section 4. Sections 5.4 and 5.5 detail the specification of
the related northbound interface and the related information elements. Finally,
Section 5.6 provides a first set of blueprints to address selected gaps required
for the realization functionalities of the Doctor project.

2.2.5.1. Functional Blocks

This section introduces the functional blocks to form the VIM. OpenStack was
selected as the candidate for implementation. Inside the VIM, 4 different
building blocks are defined (see figure6).

[image: ../../_images/figure6.png]
Functional blocks

2.2.5.1.1. Monitor

The Monitor module has the responsibility for monitoring the virtualized
infrastructure. There are already many existing tools and services (e.g. Zabbix)
to monitor different aspects of hardware and software resources which can be
used for this purpose.

2.2.5.1.2. Inspector

The Inspector module has the ability a) to receive various failure notifications
regarding physical resource(s) from Monitor module(s), b) to find the affected
virtual resource(s) by querying the resource map in the Controller, and c) to
update the state of the virtual resource (and physical resource).

The Inspector has drivers for different types of events and resources to
integrate any type of Monitor and Controller modules. It also uses a failure
policy database to decide on the failure selection and aggregation from raw
events. This failure policy database is configured by the Administrator.

The reason for separation of the Inspector and Controller modules is to make the
Controller focus on simple operations by avoiding a tight integration of various
health check mechanisms into the Controller.

2.2.5.1.3. Controller

The Controller is responsible for maintaining the resource map (i.e. the mapping
from physical resources to virtual resources), accepting update requests for the
resource state(s) (exposing as provider API), and sending all failure events
regarding virtual resources to the Notifier. Optionally, the Controller has the
ability to force the state of a given physical resource to down in the resource
mapping when it receives failure notifications from the Inspector for that
given physical resource.
The Controller also re-calculates the capacity of the NVFI when receiving a
failure notification for a physical resource.

In a real-world deployment, the VIM may have several controllers, one for each
resource type, such as Nova, Neutron and Cinder in OpenStack. Each controller
maintains a database of virtual and physical resources which shall be the master
source for resource information inside the VIM.

2.2.5.1.4. Notifier

The focus of the Notifier is on selecting and aggregating failure events
received from the controller based on policies mandated by the Consumer.
Therefore, it allows the Consumer to subscribe for alarms regarding virtual
resources using a method such as API endpoint. After receiving a fault
event from a Controller, it will notify the fault to the Consumer by referring
to the alarm configuration which was defined by the Consumer earlier on.

To reduce complexity of the Controller, it is a good approach for the
Controllers to emit all notifications without any filtering mechanism and have
another service (i.e. Notifier) handle those notifications properly. This is the
general philosophy of notifications in OpenStack. Note that a fault message
consumed by the Notifier is different from the fault message received by the
Inspector; the former message is related to virtual resources which are visible
to users with relevant ownership, whereas the latter is related to raw devices
or small entities which should be handled with an administrator privilege.

The northbound interface between the Notifier and the Consumer/Administrator is
specified in Detailed northbound interface specification.

2.2.5.2. Sequence

2.2.5.2.1. Fault Management

The detailed work flow for fault management is as follows (see also figure7):

	Request to subscribe to monitor specific virtual resources. A query filter
can be used to narrow down the alarms the Consumer wants to be informed
about.

	Each subscription request is acknowledged with a subscribe response message.
The response message contains information about the subscribed virtual
resources, in particular if a subscribed virtual resource is in “alarm”
state.

	The NFVI sends monitoring events for resources the VIM has been subscribed
to. Note: this subscription message exchange between the VIM and NFVI is not
shown in this message flow.

	Event correlation, fault detection and aggregation in VIM.

	Database lookup to find the virtual resources affected by the detected fault.

	Fault notification to Consumer.

	The Consumer switches to standby configuration (STBY)

	Instructions to VIM requesting certain actions to be performed on the
affected resources, for example migrate/update/terminate specific
resource(s). After reception of such instructions, the VIM is executing the
requested action, e.g. it will migrate or terminate a virtual resource.

	Query request from Consumer to VIM to get information about the current
status of a resource.

	Response to the query request with information about the current status of
the queried resource. In case the resource is in “fault” state, information
about the related fault(s) is returned.

In order to allow for quick reaction to failures, the time interval between
fault detection in step 3 and the corresponding recovery actions in step 7 and 8
shall be less than 1 second.

[image: ../../_images/figure7.png]
Fault management work flow

[image: ../../_images/figure8.png]
Fault management scenario

figure8 shows a more detailed message flow (Steps 4 to 6) between
the 4 building blocks introduced in Functional Blocks.

	The Monitor observed a fault in the NFVI and reports the raw fault to the
Inspector.
The Inspector filters and aggregates the faults using pre-configured
failure policies.

	a) The Inspector queries the Resource Map to find the virtual resources
affected by the raw fault in the NFVI.
b) The Inspector updates the state of the affected virtual resources in the
Resource Map.
c) The Controller observes a change of the virtual resource state and informs
the Notifier about the state change and the related alarm(s).
Alternatively, the Inspector may directly inform the Notifier about it.

	The Notifier is performing another filtering and aggregation of the changes
and alarms based on the pre-configured alarm configuration. Finally, a fault
notification is sent to northbound to the Consumer.

2.2.5.2.2. NFVI Maintenance

[image: ../../_images/figure9.png]
NFVI maintenance work flow

The detailed work flow for NFVI maintenance is shown in figure9
and has the following steps. Note that steps 1, 2, and 5 to 8a in the NFVI
maintenance work flow are very similar to the steps in the fault management work
flow and share a similar implementation plan in Release 1.

	Subscribe to fault/maintenance notifications.

	Response to subscribe request.

	Maintenance trigger received from administrator.

	VIM switches NFVI resources to “maintenance” state. This, e.g., means they
should not be used for further allocation/migration requests

	Database lookup to find the virtual resources affected by the detected
maintenance operation.

	Maintenance notification to Consumer.

	The Consumer switches to standby configuration (STBY)

	Instructions from Consumer to VIM requesting certain recovery actions to be
performed (step 8a). After reception of such instructions, the VIM is
executing the requested action in order to empty the physical resources (step
8b).

	Maintenance response from VIM to inform the Administrator that the physical
machines have been emptied (or the operation resulted in an error state).

	Administrator is coordinating and executing the maintenance operation/work
on the NFVI.

	Query request from Administrator to VIM to get information about the
current state of a resource.

	Response to the query request with information about the current state of
the queried resource(s). In case the resource is in “maintenance” state,
information about the related maintenance operation is returned.

[image: ../../_images/figure10.png]
NFVI Maintenance scenario

figure10 shows a more detailed message flow (Steps 3 to 6 and 9)
between the 4 building blocks introduced in Section 5.1..

	The Administrator is sending a StateChange request to the Controller residing
in the VIM.

	The Controller queries the Resource Map to find the virtual resources
affected by the planned maintenance operation.

	a) The Controller updates the state of the affected virtual resources in the
Resource Map database.

b) The Controller informs the Notifier about the virtual resources that will
be affected by the maintenance operation.

	A maintenance notification is sent to northbound to the Consumer.

…

	The Controller informs the Administrator after the physical resources have
been freed.

2.2.5.3. Information elements

This section introduces all attributes and information elements used in the
messages exchange on the northbound interfaces between the VIM and the VNFO and
VNFM.

Note: The information elements will be aligned with current work in ETSI NFV IFA
working group.

Simple information elements:

	SubscriptionID (Identifier): identifies a subscription to receive fault or maintenance
notifications.

	NotificationID (Identifier): identifies a fault or maintenance notification.

	VirtualResourceID (Identifier): identifies a virtual resource affected by a
fault or a maintenance action of the underlying physical resource.

	PhysicalResourceID (Identifier): identifies a physical resource affected by a
fault or maintenance action.

	VirtualResourceState (String): state of a virtual resource, e.g. “normal”,
“maintenance”, “down”, “error”.

	PhysicalResourceState (String): state of a physical resource, e.g. “normal”,
“maintenance”, “down”, “error”.

	VirtualResourceType (String): type of the virtual resource, e.g. “virtual
machine”, “virtual memory”, “virtual storage”, “virtual CPU”, or “virtual
NIC”.

	FaultID (Identifier): identifies the related fault in the underlying physical
resource. This can be used to correlate different fault notifications caused
by the same fault in the physical resource.

	FaultType (String): Type of the fault. The allowed values for this parameter
depend on the type of the related physical resource. For example, a resource
of type “compute hardware” may have faults of type “CPU failure”, “memory
failure”, “network card failure”, etc.

	Severity (Integer): value expressing the severity of the fault. The higher the
value, the more severe the fault.

	MinSeverity (Integer): value used in filter information elements. Only faults
with a severity higher than the MinSeverity value will be notified to the
Consumer.

	EventTime (Datetime): Time when the fault was observed.

	EventStartTime and EventEndTime (Datetime): Datetime range that can be used in
a FaultQueryFilter to narrow down the faults to be queried.

	ProbableCause (String): information about the probable cause of the fault.

	CorrelatedFaultID (Integer): list of other faults correlated to this fault.

	isRootCause (Boolean): Parameter indicating if this fault is the root for
other correlated faults. If TRUE, then the faults listed in the parameter
CorrelatedFaultID are caused by this fault.

	FaultDetails (Key-value pair): provides additional information about the
fault, e.g. information about the threshold, monitored attributes, indication
of the trend of the monitored parameter.

	FirmwareVersion (String): current version of the firmware of a physical
resource.

	HypervisorVersion (String): current version of a hypervisor.

	ZoneID (Identifier): Identifier of the resource zone. A resource zone is the
logical separation of physical and software resources in an NFVI deployment
for physical isolation, redundancy, or administrative designation.

	Metadata (Key-value pair): provides additional information of a physical
resource in maintenance/error state.

Complex information elements (see also UML diagrams in figure13
and figure14):

	VirtualResourceInfoClass:

	VirtualResourceID [1] (Identifier)

	VirtualResourceState [1] (String)

	Faults [0..*] (FaultClass): For each resource, all faults
including detailed information about the faults are provided.

	FaultClass: The parameters of the FaultClass are partially based on ETSI TS
132 111-2 (V12.1.0) *, which is specifying fault management in 3GPP, in
particular describing the information elements used for alarm notifications.

	FaultID [1] (Identifier)

	FaultType [1] (String)

	Severity [1] (Integer)

	EventTime [1] (Datetime)

	ProbableCause [1] (String)

	CorrelatedFaultID [0..*] (Identifier)

	FaultDetails [0..*] (Key-value pair)

	*

	http://www.etsi.org/deliver/etsi_ts/132100_132199/13211102/12.01.00_60/ts_13211102v120100p.pdf

	SubscribeFilterClass

	VirtualResourceType [0..*] (String)

	VirtualResourceID [0..*] (Identifier)

	FaultType [0..*] (String)

	MinSeverity [0..1] (Integer)

	FaultQueryFilterClass: narrows down the FaultQueryRequest, for example it
limits the query to certain physical resources, a certain zone, a given fault
type/severity/cause, or a specific FaultID.

	VirtualResourceType [0..*] (String)

	VirtualResourceID [0..*] (Identifier)

	FaultType [0..*] (String)

	MinSeverity [0..1] (Integer)

	EventStartTime [0..1] (Datetime)

	EventEndTime [0..1] (Datetime)

	PhysicalResourceStateClass:

	PhysicalResourceID [1] (Identifier)

	PhysicalResourceState [1] (String): mandates the new state of the physical
resource.

	Metadata [0..*] (Key-value pair)

	PhysicalResourceInfoClass:

	PhysicalResourceID [1] (Identifier)

	PhysicalResourceState [1] (String)

	FirmwareVersion [0..1] (String)

	HypervisorVersion [0..1] (String)

	ZoneID [0..1] (Identifier)

	Metadata [0..*] (Key-value pair)

	StateQueryFilterClass: narrows down a StateQueryRequest, for example it limits
the query to certain physical resources, a certain zone, or a given resource
state (e.g., only resources in “maintenance” state).

	PhysicalResourceID [1] (Identifier)

	PhysicalResourceState [1] (String)

	ZoneID [0..1] (Identifier)

2.2.5.4. Detailed northbound interface specification

This section is specifying the northbound interfaces for fault management and
NFVI maintenance between the VIM on the one end and the Consumer and the
Administrator on the other ends. For each interface all messages and related
information elements are provided.

Note: The interface definition will be aligned with current work in ETSI NFV IFA
working group .

All of the interfaces described below are produced by the VIM and consumed by
the Consumer or Administrator.

2.2.5.4.1. Fault management interface

This interface allows the VIM to notify the Consumer about a virtual resource
that is affected by a fault, either within the virtual resource itself or by the
underlying virtualization infrastructure. The messages on this interface are
shown in figure13 and explained in detail in the following
subsections.

Note: The information elements used in this section are described in detail in
Section 5.4.

[image: ../../_images/figure13.png]
Fault management NB I/F messages

2.2.5.4.1.1. SubscribeRequest (Consumer -> VIM)

Subscription from Consumer to VIM to be notified about faults of specific
resources. The faults to be notified about can be narrowed down using a
subscribe filter.

Parameters:

	SubscribeFilter [1] (SubscribeFilterClass): Optional information to narrow
down the faults that shall be notified to the Consumer, for example limit to
specific VirtualResourceID(s), severity, or cause of the alarm.

2.2.5.4.1.2. SubscribeResponse (VIM -> Consumer)

Response to a subscribe request message including information about the
subscribed resources, in particular if they are in “fault/error” state.

Parameters:

	SubscriptionID [1] (Identifier): Unique identifier for the subscription. It
can be used to delete or update the subscription.

	VirtualResourceInfo [0..*] (VirtualResourceInfoClass): Provides additional
information about the subscribed resources, i.e., a list of the related
resources, the current state of the resources, etc.

2.2.5.4.1.3. FaultNotification (VIM -> Consumer)

Notification about a virtual resource that is affected by a fault, either within
the virtual resource itself or by the underlying virtualization infrastructure.
After reception of this request, the Consumer will decide on the optimal
action to resolve the fault. This includes actions like switching to a hot
standby virtual resource, migration of the fault virtual resource to another
physical machine, termination of the faulty virtual resource and instantiation
of a new virtual resource in order to provide a new hot standby resource. In
some use cases the Consumer can leave virtual resources on failed host to be
booted up again after fault is recovered. Existing resource management
interfaces and messages between the Consumer and the VIM can be used for those
actions, and there is no need to define additional actions on the Fault
Management Interface.

Parameters:

	NotificationID [1] (Identifier): Unique identifier for the notification.

	VirtualResourceInfo [1..*] (VirtualResourceInfoClass): List of faulty
resources with detailed information about the faults.

2.2.5.4.1.4. FaultQueryRequest (Consumer -> VIM)

Request to find out about active alarms at the VIM. A FaultQueryFilter can be
used to narrow down the alarms returned in the response message.

Parameters:

	FaultQueryFilter [1] (FaultQueryFilterClass): narrows down the
FaultQueryRequest, for example it limits the query to certain physical
resources, a certain zone, a given fault type/severity/cause, or a specific
FaultID.

2.2.5.4.1.5. FaultQueryResponse (VIM -> Consumer)

List of active alarms at the VIM matching the FaultQueryFilter specified in the
FaultQueryRequest.

Parameters:

	VirtualResourceInfo [0..*] (VirtualResourceInfoClass): List of faulty
resources. For each resource all faults including detailed information about
the faults are provided.

2.2.5.4.2. NFVI maintenance

The NFVI maintenance interfaces Consumer-VIM allows the Consumer to subscribe to
maintenance notifications provided by the VIM. The related maintenance interface
Administrator-VIM allows the Administrator to issue maintenance requests to the
VIM, i.e. requesting the VIM to take appropriate actions to empty physical
machine(s) in order to execute maintenance operations on them. The interface
also allows the Administrator to query the state of physical machines, e.g., in
order to get details in the current status of the maintenance operation like a
firmware update.

The messages defined in these northbound interfaces are shown in figure14
and described in detail in the following subsections.

[image: ../../_images/figure14.png]
NFVI maintenance NB I/F messages

2.2.5.4.2.1. SubscribeRequest (Consumer -> VIM)

Subscription from Consumer to VIM to be notified about maintenance operations
for specific virtual resources. The resources to be informed about can be
narrowed down using a subscribe filter.

Parameters:

	SubscribeFilter [1] (SubscribeFilterClass): Information to narrow down the
faults that shall be notified to the Consumer, for example limit to specific
virtual resource type(s).

2.2.5.4.2.2. SubscribeResponse (VIM -> Consumer)

Response to a subscribe request message, including information about the
subscribed virtual resources, in particular if they are in “maintenance” state.

Parameters:

	SubscriptionID [1] (Identifier): Unique identifier for the subscription. It
can be used to delete or update the subscription.

	VirtualResourceInfo [0..*] (VirtalResourceInfoClass): Provides additional
information about the subscribed virtual resource(s), e.g., the ID, type and
current state of the resource(s).

2.2.5.4.2.3. MaintenanceNotification (VIM -> Consumer)

Notification about a physical resource switched to “maintenance” state. After
reception of this request, the Consumer will decide on the optimal action to
address this request, e.g., to switch to the standby (STBY) configuration.

Parameters:

	VirtualResourceInfo [1..*] (VirtualResourceInfoClass): List of virtual
resources where the state has been changed to maintenance.

2.2.5.4.2.4. StateChangeRequest (Administrator -> VIM)

Request to change the state of a list of physical resources, e.g. to
“maintenance” state, in order to prepare them for a planned maintenance
operation.

Parameters:

	PhysicalResourceState [1..*] (PhysicalResourceStateClass)

2.2.5.4.2.5. StateChangeResponse (VIM -> Administrator)

Response message to inform the Administrator that the requested resources are
now in maintenance state (or the operation resulted in an error) and the
maintenance operation(s) can be executed.

Parameters:

	PhysicalResourceInfo [1..*] (PhysicalResourceInfoClass)

2.2.5.4.2.6. StateQueryRequest (Administrator -> VIM)

In this procedure, the Administrator would like to get the information about
physical machine(s), e.g. their state (“normal”, “maintenance”), firmware
version, hypervisor version, update status of firmware and hypervisor, etc. It
can be used to check the progress during firmware update and the confirmation
after update. A filter can be used to narrow down the resources returned in the
response message.

Parameters:

	StateQueryFilter [1] (StateQueryFilterClass): narrows down the
StateQueryRequest, for example it limits the query to certain physical
resources, a certain zone, or a given resource state.

2.2.5.4.2.7. StateQueryResponse (VIM -> Administrator)

List of physical resources matching the filter specified in the
StateQueryRequest.

Parameters:

	PhysicalResourceInfo [0..*] (PhysicalResourceInfoClass): List of physical
resources. For each resource, information about the current state, the
firmware version, etc. is provided.

2.2.5.4.3. NFV IFA, OPNFV Doctor and AODH alarms

This section compares the alarm interfaces of ETSI NFV IFA with the specifications
of this document and the alarm class of AODH.

ETSI NFV specifies an interface for alarms from virtualised resources in ETSI GS
NFV-IFA 005 [ENFV]. The interface specifies an Alarm class and two notifications plus
operations to query alarm instances and to subscribe to the alarm notifications.

The specification in this document has a structure that is very similar to the
ETSI NFV specifications. The notifications differ in that an alarm notification
in the NFV interface defines a single fault for a single resource while the
notification specified in this document can contain multiple faults for
multiple resources. The Doctor specification is lacking the detailed time stamps
of the NFV specification essential for synchronizaion of the alarm list
using the query operation. The detailed time stamps are also of value in the event
and alarm history DBs.

AODH defines a base class for alarms, not the notifications. This means that
some of the dynamic attributes of the ETSI NFV alarm type, like alarmRaisedTime,
are not applicable to the AODH alarm class but are attributes of in the actual
notifications. (Description of these attributes will be added later.) The AODH alarm
class is lacking some attributes present in the NFV specification, fault details
and correlated alarms. Instead the AODH alarm class has attributes for actions,
rules and user and project id.

	ETSI NFV Alarm Type

	OPNFV Doctor
Requirement Specs

	AODH Event Alarm
Notification

	Description / Comment

	Recommendations

	alarmId

	FaultId

	alarm_id

	Identifier of an alarm.

	-

	-

	-

	alarm_name

	Human readable alarm name.

	May be added in ETSI NFV Stage 3.

	managedObjectId

	VirtualResourceId

	(reason)

	Identifier of the affected virtual resource
is part of the AODH reason parameter.

	-

	-

	-

	user_id, project_id

	User and project identifiers.

	May be added in ETSI NFV Stage 3.

	alarmRaisedTime

	-

	-

	Timestamp when alarm was raised.

	To be added to Doctor and AODH. May
be derived (e.g. in a shimlayer) from
the AODH alarm history.

	alarmChangedTime

	-

	-

	Timestamp when alarm was changed/updated.

	see above

	alarmClearedTime

	-

	-

	Timestamp when alarm was cleared.

	see above

	eventTime

	-

	-

	Timestamp when alarm was first observed by
the Monitor.

	see above

	-

	EventTime

	generated

	Timestamp of the Notification.

	Update parameter name in Doctor spec.
May be added in ETSI NFV Stage 3.

	state:
E.g. Fired, Updated
Cleared

	VirtualResourceState:
E.g. normal, down
maintenance, error

	current: ok, alarm,
insufficient_data

	ETSI NFV IFA 005/006 lists example alarm
states.

	Maintenance state is missing in AODH.
List of alarm states will be
specified in ETSI NFV Stage 3.

	perceivedSeverity:
E.g. Critical, Major,
Minor, Warning,
Indeterminate, Cleared

	Severity (Integer)

	Severity:
low (default),
moderate, critical

	ETSI NFV IFA 005/006 lists example
perceived severity values.

	List of alarm states will be
specified in ETSI NFV Stage 3.

	OPNFV: Severity (Integer):

	
	update OPNFV Doctor specification
to Enum

	perceivedSeverity=Indetermined:

	
	remove value Indetermined in
IFA and map undefined values to
“minor” severity, or

	add value indetermined in AODH
and make it the default value.

	perceivedSeverity=Cleared:

	
	remove value Cleared in IFA as
the information about a cleared
alarm alarm can be derived from
the alarm state parameter, or

	add value cleared in AODH and
set a rule that the severity is
“cleared” when the state is ok.

	faultType

	FaultType

	event_type in
reason_data

	Type of the fault, e.g. “CPU failure” of a
compute resource, in machine interpretable
format.

	OpenStack Alarming (Aodh) can use a
fuzzy matching with wildcard string,
“compute.cpu.failure”.

	N/A

	N/A

	type = “event”

	Type of the notification. For fault
notifications the type in AODH is “event”.

	-

	probableCause

	ProbableCause

	-

	Probable cause of the alarm.

	May be provided (e.g. in a shimlayer)
based on Vitrage topology awareness /
root-cause-analysis.

	isRootCause

	IsRootCause

	-

	Boolean indicating whether the fault is the
root cause of other faults.

	see above

	correlatedAlarmId

	CorrelatedFaultId

	-

	List of IDs of correlated faults.

	see above

	faultDetails

	FaultDetails

	-

	Additional details about the fault/alarm.

	FaultDetails information element will
be specified in ETSI NFV Stage 3.

	-

	-

	action, previous

	Additional AODH alarm related parameters.

	-

Table: Comparison of alarm attributes

The primary area of improvement should be alignment of the perceived severity. This
is important for a quick and accurate evaluation of the alarm. AODH thus should
support also the X.733 values Critical, Major, Minor, Warning and Indeterminate.

The detailed time stamps (raised, changed, cleared) which are essential for
synchronizing the alarm list using a query operation should be added to the
Doctor specification.

Other areas that need alignment is the so called alarm state in NFV. Here we must
however consider what can be attributes of the notification vs. what should be a
property of the alarm instance. This will be analyzed later.

2.2.5.5. Detailed southbound interface specification

This section is specifying the southbound interfaces for fault management
between the Monitors and the Inspector.
Although southbound interfaces should be flexible to handle various events from
different types of Monitors, we define unified event API in order to improve
interoperability between the Monitors and the Inspector.
This is not limiting implementation of Monitor and Inspector as these could be
extended in order to support failures from intelligent inspection like prediction.

Note: The interface definition will be aligned with current work in ETSI NFV IFA
working group.

2.2.5.5.1. Fault event interface

This interface allows the Monitors to notify the Inspector about an event which
was captured by the Monitor and may effect resources managed in the VIM.

2.2.5.5.1.1. EventNotification

Event notification including fault description.
The entity of this notification is event, and not fault or error specifically.
This allows us to use generic event format or framework build out of Doctor project.
The parameters below shall be mandatory, but keys in ‘Details’ can be optional.

Parameters:

	Time [1]: Datetime when the fault was observed in the Monitor.

	Type [1]: Type of event that will be used to process correlation in Inspector.

	Details [0..1]: Details containing additional information with Key-value pair style.
Keys shall be defined depending on the Type of the event.

E.g.:

{
 'event': {
 'time': '2016-04-12T08:00:00',
 'type': 'compute.host.down',
 'details': {
 'hostname': 'compute-1',
 'source': 'sample_monitor',
 'cause': 'link-down',
 'severity': 'critical',
 'status': 'down',
 'monitor_id': 'monitor-1',
 'monitor_event_id': '123',
 }
 }
}

Optional parameters in ‘Details’:

	Hostname: the hostname on which the event occurred.

	Source: the display name of reporter of this event. This is not limited to monitor, other entity can be specified such as ‘KVM’.

	Cause: description of the cause of this event which could be different from the type of this event.

	Severity: the severity of this event set by the monitor.

	Status: the status of target object in which error occurred.

	MonitorID: the ID of the monitor sending this event.

	MonitorEventID: the ID of the event in the monitor. This can be used by operator while tracking the monitor log.

	RelatedTo: the array of IDs which related to this event.

Also, we can have bulk API to receive multiple events in a single HTTP POST
message by using the ‘events’ wrapper as follows:

{
 'events': [
 'event': {
 'time': '2016-04-12T08:00:00',
 'type': 'compute.host.down',
 'details': {},
 },
 'event': {
 'time': '2016-04-12T08:00:00',
 'type': 'compute.host.nic.error',
 'details': {},
 }
]
}

2.2.5.6. Blueprints

This section is listing a first set of blueprints that have been proposed by the
Doctor project to the open source community. Further blueprints addressing other
gaps identified in Section 4 will be submitted at a later stage of the OPNFV. In
this section the following definitions are used:

	“Event” is a message emitted by other OpenStack services such as Nova and
Neutron and is consumed by the “Notification Agents” in Ceilometer.

	“Notification” is a message generated by a “Notification Agent” in Ceilometer
based on an “event” and is delivered to the “Collectors” in Ceilometer that
store those notifications (as “sample”) to the Ceilometer “Databases”.

2.2.5.6.1. Instance State Notification (Ceilometer) †

The Doctor project is planning to handle “events” and “notifications” regarding
Resource Status; Instance State, Port State, Host State, etc. Currently,
Ceilometer already receives “events” to identify the state of those resources,
but it does not handle and store them yet. This is why we also need a new event
definition to capture those resource states from “events” created by other
services.

This BP proposes to add a new compute notification state to handle events from
an instance (server) from nova. It also creates a new meter “instance.state” in
OpenStack.

	†

	https://etherpad.opnfv.org/p/doctor_bps

2.2.5.6.2. Event Publisher for Alarm (Ceilometer) ‡

Problem statement:

The existing “Alarm Evaluator” in OpenStack Ceilometer is periodically
querying/polling the databases in order to check all alarms independently from
other processes. This is adding additional delay to the fault notification
send to the Consumer, whereas one requirement of Doctor is to react on faults
as fast as possible.

The existing message flow is shown in figure12: after receiving
an “event”, a “notification agent” (i.e. “event publisher”) will send a
“notification” to a “Collector”. The “collector” is collecting the
notifications and is updating the Ceilometer “Meter” database that is storing
information about the “sample” which is capured from original “event”. The
“Alarm Evaluator” is periodically polling this databases then querying “Meter”
database based on each alarm configuration.

[image: ../../_images/figure12.png]
Implementation plan in Ceilometer architecture

In the current Ceilometer implementation, there is no possibility to directly
trigger the “Alarm Evaluator” when a new “event” was received, but the “Alarm
Evaluator” will only find out that requires firing new notification to the
Consumer when polling the database.

Change/feature request:

This BP proposes to add a new “event publisher for alarm”, which is bypassing
several steps in Ceilometer in order to avoid the polling-based approach of
the existing Alarm Evaluator that makes notification slow to users. See
figure12.

After receiving an “(alarm) event” by listening on the Ceilometer message
queue (“notification bus”), the new “event publisher for alarm” immediately
hands a “notification” about this event to a new Ceilometer component
“Notification-driven alarm evaluator” proposed in the other BP (see Section
5.6.3).

Note, the term “publisher” refers to an entity in the Ceilometer architecture
(it is a “notification agent”). It offers the capability to provide
notifications to other services outside of Ceilometer, but it is also used to
deliver notifications to other Ceilometer components (e.g. the “Collectors”)
via the Ceilometer “notification bus”.

Implementation detail

	“Event publisher for alarm” is part of Ceilometer

	The standard AMQP message queue is used with a new topic string.

	No new interfaces have to be added to Ceilometer.

	“Event publisher for Alarm” can be configured by the Administrator of
Ceilometer to be used as “Notification Agent” in addition to the existing
“Notifier”

	Existing alarm mechanisms of Ceilometer can be used allowing users to
configure how to distribute the “notifications” transformed from “events”,
e.g. there is an option whether an ongoing alarm is re-issued or not
(“repeat_actions”).

	‡

	https://etherpad.opnfv.org/p/doctor_bps

2.2.5.6.3. Notification-driven alarm evaluator (Ceilometer) §

Problem statement:

The existing “Alarm Evaluator” in OpenStack Ceilometer is periodically
querying/polling the databases in order to check all alarms independently from
other processes. This is adding additional delay to the fault notification send
to the Consumer, whereas one requirement of Doctor is to react on faults as fast
as possible.

Change/feature request:

This BP is proposing to add an alternative “Notification-driven Alarm Evaluator”
for Ceilometer that is receiving “notifications” sent by the “Event Publisher
for Alarm” described in the other BP. Once this new “Notification-driven Alarm
Evaluator” received “notification”, it finds the “alarm” configurations which
may relate to the “notification” by querying the “alarm” database with some keys
i.e. resource ID, then it will evaluate each alarm with the information in that
“notification”.

After the alarm evaluation, it will perform the same way as the existing “alarm
evaluator” does for firing alarm notification to the Consumer. Similar to the
existing Alarm Evaluator, this new “Notification-driven Alarm Evaluator” is
aggregating and correlating different alarms which are then provided northbound
to the Consumer via the OpenStack “Alarm Notifier”. The user/administrator can
register the alarm configuration via existing Ceilometer API ¶. Thereby, he
can configure whether to set an alarm or not and where to send the alarms to.

Implementation detail

	The new “Notification-driven Alarm Evaluator” is part of Ceilometer.

	Most of the existing source code of the “Alarm Evaluator” can be re-used to
implement this BP

	No additional application logic is needed

	It will access the Ceilometer Databases just like the existing “Alarm
evaluator”

	Only the polling-based approach will be replaced by a listener for
“notifications” provided by the “Event Publisher for Alarm” on the Ceilometer
“notification bus”.

	No new interfaces have to be added to Ceilometer.

	§

	https://etherpad.opnfv.org/p/doctor_bps

	¶

	https://wiki.openstack.org/wiki/Ceilometer/Alerting

2.2.5.6.4. Report host fault to update server state immediately (Nova) #

Problem statement:

	Nova state change for failed or unreachable host is slow and does not reliably
state host is down or not. This might cause same server instance to run twice
if action taken to evacuate instance to another host.

	Nova state for server(s) on failed host will not change, but remains active
and running. This gives the user false information about server state.

	VIM northbound interface notification of host faults towards VNFM and NFVO
should be in line with OpenStack state. This fault notification is a Telco
requirement defined in ETSI and will be implemented by OPNFV Doctor project.

	Openstack user cannot make HA actions fast and reliably by trusting server
state and host state.

Proposed change:

There needs to be a new API for Admin to state host is down. This API is used to
mark services running in host down to reflect the real situation.

Example on compute node is:

	When compute node is up and running::

vm_state: activeand power_state: running
nova-compute state: up status: enabled

	When compute node goes down and new API is called to state host is down::

vm_state: stopped power_state: shutdown
nova-compute state: down status: enabled

Alternatives:

There is no attractive alternative to detect all different host faults than to
have an external tool to detect different host faults. For this kind of tool to
exist there needs to be new API in Nova to report fault. Currently there must be
some kind of workarounds implemented as cannot trust or get the states from
OpenStack fast enough.

	#

	https://blueprints.launchpad.net/nova/+spec/update-server-state-immediately

2.2.5.6.5. Other related BPs

This section lists some BPs related to Doctor, but proposed by drafters outside
the OPNFV community.

2.2.5.6.5.1. pacemaker-servicegroup-driver ♠

This BP will detect and report host down quite fast to OpenStack. This however
might not work properly for example when management network has some problem and
host reported faulty while VM still running there. This might lead to launching
same VM instance twice causing problems. Also NB IF message needs fault reason
and for that the source needs to be a tool that detects different kind of faults
as Doctor will be doing. Also this BP might need enhancement to change server
and service states correctly.

	♠

	https://blueprints.launchpad.net/nova/+spec/pacemaker-servicegroup-driver

2.2.6. Summary and conclusion

The Doctor project aimed at detailing NFVI fault management and NFVI maintenance
requirements. These are indispensable operations for an Operator, and extremely
necessary to realize telco-grade high availability. High availability is a large
topic; the objective of Doctor is not to realize a complete high availability
architecture and implementation. Instead, Doctor limited itself to addressing
the fault events in NFVI, and proposes enhancements necessary in VIM, e.g.
OpenStack, to ensure VNFs availability in such fault events, taking a Telco VNFs
application level management system into account.

The Doctor project performed a robust analysis of the requirements from NFVI
fault management and NFVI maintenance operation, concretely found out gaps in
between such requirements and the current implementation of OpenStack.
A detailed architecture and interface specification has been described in this
document and work to realize Doctor features and fill out the identified gaps
in upstream communities is in the final stages of development.

2.2.7. Annex: NFVI Faults

Faults in the listed elements need to be immediately notified to the Consumer in
order to perform an immediate action like live migration or switch to a hot
standby entity. In addition, the Administrator of the host should trigger a
maintenance action to, e.g., reboot the server or replace a defective hardware
element.

Faults can be of different severity, i.e., critical, warning, or
info. Critical faults require immediate action as a severe degradation of the
system has happened or is expected. Warnings indicate that the system
performance is going down: related actions include closer (e.g. more frequent)
monitoring of that part of the system or preparation for a cold migration to a
backup VM. Info messages do not require any action. We also consider a type
“maintenance”, which is no real fault, but may trigger maintenance actions
like a re-boot of the server or replacement of a faulty, but redundant HW.

Faults can be gathered by, e.g., enabling SNMP and installing some open source
tools to catch and poll SNMP. When using for example Zabbix one can also put an
agent running on the hosts to catch any other fault. In any case of failure, the
Administrator should be notified. The following tables provide a list of high
level faults that are considered within the scope of the Doctor project
requiring immediate action by the Consumer.

Compute/Storage

	Fault

	Severity

	How to
detect?

	Comment

	Immediate action
to recover

	Processor/CPU
failure, CPU
condition not ok

	Critical

	Zabbix

	
	Switch to hot
standby

	Memory failure/
Memory condition
not ok

	Critical

	Zabbix
(IPMI)

	
	Switch to hot
standby

	Network card
failure, e.g.
network adapter
connectivity lost

	Critical

	Zabbix/
Ceilometer

	
	Switch to hot
standby

	Disk crash

	Info

	RAID
monitoring

	Network storage
is very
redundant (e.g.
RAID system)
and can
guarantee high
availability

	Inform OAM

	Storage
controller

	Critical

	Zabbix
(IPMI)

	
	Live migration
if storage
is still
accessible;
otherwise hot
standby

	PDU/power
failure, power
off, server reset

	Critical

	Zabbix/
Ceilometer

	
	Switch to hot
standby

	Power
degration, power
redundancy lost,
power threshold
exceeded

	Warning

	SNMP

	
	Live migration

	Chassis problem
(e.g. fan
degraded/failed,
chassis power
degraded), CPU
fan problem,
temperature/
thermal condition
not ok

	Warning

	SNMP

	
	Live migration

	Mainboard failure

	Critical

	Zabbix
(IPMI)

	e.g. PCIe, SAS
link failure

	Switch to hot
standby

	OS crash (e.g.
kernel panic)

	Critical

	Zabbix

	
	Switch to hot
standby

Hypervisor

	Fault

	Severity

	How to
detect?

	Comment

	Immediate action
to recover

	System has
restarted

	Critical

	Zabbix

	
	Switch to hot
standby

	Hypervisor
failure

	Warning/
Critical

	Zabbix/
Ceilometer

	
	Evacuation/switch
to hot standby

	Hypervisor
status not
retrievable
after certain
period

	Warning

	Alarming
service

	Zabbix/
Ceilometer
unreachable

	Rebuild VM

Network

	Fault

	Severity

	How to
detect?

	Comment

	Immediate action to
recover

	SDN/OpenFlow
switch,
controller
degraded/failed

	Critical

	Ceilo-
meter

	
	Switch to
hot standby
or reconfigure
virtual network
topology

	Hardware failure
of physical
switch/router

	Warning

	SNMP

	Redundancy of
physical
infrastructure
is reduced or
no longer
available

	Live migration if
possible otherwise
evacuation

2.3. Manuals

2.3.1. OpenStack NOVA API for marking host down.

2.3.1.1. Related Blueprints:

https://blueprints.launchpad.net/nova/+spec/mark-host-down
https://blueprints.launchpad.net/python-novaclient/+spec/support-force-down-service

2.3.1.2. What the API is for

This API will give external fault monitoring system a possibility of telling
OpenStack Nova fast that compute host is down. This will immediately enable
calling of evacuation of any VM on host and further enabling faster HA
actions.

2.3.1.3. What this API does

In OpenStack the nova-compute service state can represent the compute host
state and this new API is used to force this service down. It is assumed
that the one calling this API has made sure the host is also fenced or
powered down. This is important, so there is no chance same VM instance will
appear twice in case evacuated to new compute host. When host is recovered
by any means, the external system is responsible of calling the API again to
disable forced_down flag and let the host nova-compute service report again
host being up. If network fenced host come up again it should not boot VMs
it had if figuring out they are evacuated to other compute host. The
decision of deleting or booting VMs there used to be on host should be
enhanced later to be more reliable by Nova blueprint:
https://blueprints.launchpad.net/nova/+spec/robustify-evacuate

2.3.1.4. REST API for forcing down:

Parameter explanations:
tenant_id: Identifier of the tenant.
binary: Compute service binary name.
host: Compute host name.
forced_down: Compute service forced down flag.
token: Token received after successful authentication.
service_host_ip: Serving controller node ip.

request:
PUT /v2.1/{tenant_id}/os-services/force-down
{
“binary”: “nova-compute”,
“host”: “compute1”,
“forced_down”: true
}

response:
200 OK
{
“service”: {
“host”: “compute1”,
“binary”: “nova-compute”,
“forced_down”: true
}
}

Example:
curl -g -i -X PUT http://{service_host_ip}:8774/v2.1/{tenant_id}/os-services
/force-down -H “Content-Type: application/json” -H “Accept: application/json
” -H “X-OpenStack-Nova-API-Version: 2.11” -H “X-Auth-Token: {token}” -d ‘{“b
inary”: “nova-compute”, “host”: “compute1”, “forced_down”: true}’

2.3.1.5. CLI for forcing down:

nova service-force-down <hostname> nova-compute

Example:
nova service-force-down compute1 nova-compute

2.3.1.6. REST API for disabling forced down:

Parameter explanations:
tenant_id: Identifier of the tenant.
binary: Compute service binary name.
host: Compute host name.
forced_down: Compute service forced down flag.
token: Token received after successful authentication.
service_host_ip: Serving controller node ip.

request:
PUT /v2.1/{tenant_id}/os-services/force-down
{
“binary”: “nova-compute”,
“host”: “compute1”,
“forced_down”: false
}

response:
200 OK
{
“service”: {
“host”: “compute1”,
“binary”: “nova-compute”,
“forced_down”: false
}
}

Example:
curl -g -i -X PUT http://{service_host_ip}:8774/v2.1/{tenant_id}/os-services
/force-down -H “Content-Type: application/json” -H “Accept: application/json
” -H “X-OpenStack-Nova-API-Version: 2.11” -H “X-Auth-Token: {token}” -d ‘{“b
inary”: “nova-compute”, “host”: “compute1”, “forced_down”: false}’

2.3.1.7. CLI for disabling forced down:

nova service-force-down –unset <hostname> nova-compute

Example:
nova service-force-down –unset compute1 nova-compute

2.3.2. Get valid server state

2.3.2.1. Related Blueprints:

https://blueprints.launchpad.net/nova/+spec/get-valid-server-state

2.3.2.2. Problem description

Previously when the owner of a VM has queried his VMs, he has not received
enough state information, states have not changed fast enough in the VIM and
they have not been accurate in some scenarios. With this change this gap is now
closed.

A typical case is that, in case of a fault of a host, the user of a high
availability service running on top of that host, needs to make an immediate
switch over from the faulty host to an active standby host. Now, if the compute
host is forced down [1] as a result of that fault, the user has to be notified
about this state change such that the user can react accordingly. Similarly,
a change of the host state to “maintenance” should also be notified to the
users.

2.3.2.3. What is changed

A new host_status parameter is added to the /servers/{server_id} and
/servers/detail endpoints in microversion 2.16. By this new parameter
user can get additional state information about the host.

host_status possible values where next value in list can override the
previous:

	UP if nova-compute is up.

	UNKNOWN if nova-compute status was not reported by servicegroup driver
within configured time period. Default is within 60 seconds,
but can be changed with service_down_time in nova.conf.

	DOWN if nova-compute was forced down.

	MAINTENANCE if nova-compute was disabled. MAINTENANCE in API directly
means nova-compute service is disabled. Different wording is used to avoid
the impression that the whole host is down, as only scheduling of new VMs
is disabled.

	Empty string indicates there is no host for server.

host_status is returned in the response in case the policy permits. By
default the policy is for admin only in Nova policy.json:

"os_compute_api:servers:show:host_status": "rule:admin_api"

For an NFV use case this has to also be enabled for the owner of the VM:

"os_compute_api:servers:show:host_status": "rule:admin_or_owner"

2.3.2.4. REST API examples:

Case where nova-compute is enabled and reporting normally:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "UP",
 ...
 }
}

Case where nova-compute is enabled, but not reporting normally:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "UNKNOWN",
 ...
 }
}

Case where nova-compute is enabled, but forced_down:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "DOWN",
 ...
 }
}

Case where nova-compute is disabled:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "MAINTENANCE",
 ...
 }
}

Host Status is also visible in python-novaclient:

+-------+------+--------+------------+-------------+----------+-------------+
| ID | Name | Status | Task State | Power State | Networks | Host Status |
+-------+------+--------+------------+-------------+----------+-------------+
| 9a... | vm1 | ACTIVE | - | RUNNING | xnet=... | UP |
+-------+------+--------+------------+-------------+----------+-------------+

2.3.2.5. Links:

[1] Manual for OpenStack NOVA API for marking host down
http://artifacts.opnfv.org/doctor/docs/manuals/mark-host-down_manual.html

[2] OpenStack compute manual page
http://developer.openstack.org/api-ref-compute-v2.1.html#compute-v2.1

Index

 A
 | C
 | E
 | M
 | N
 | P
 | S
 | V

A

 	
 	ACT-STBY configuration, [1]

 	
 	Administrator, [1]

C

 	
 	Consumer, [1]

E

 	
 	EPC, [1]

M

 	
 	MME, [1]

N

 	
 	NFV, [1]

 	
 	NFVI, [1]

 	NFVO, [1]

P

 	
 	Physical resource, [1]

S

 	
 	S/P-GW, [1]

V

 	
 	VIM, [1]

 	Virtual Machine (VM), [1]

 	Virtual network, [1]

 	
 	Virtual resource, [1]

 	Virtual Storage, [1]

 	VNF, [1]

 	VNFM, [1]

Get valid server state

Related Blueprints:

https://blueprints.launchpad.net/nova/+spec/get-valid-server-state

Problem description

Previously when the owner of a VM has queried his VMs, he has not received
enough state information, states have not changed fast enough in the VIM and
they have not been accurate in some scenarios. With this change this gap is now
closed.

A typical case is that, in case of a fault of a host, the user of a high
availability service running on top of that host, needs to make an immediate
switch over from the faulty host to an active standby host. Now, if the compute
host is forced down [1] as a result of that fault, the user has to be notified
about this state change such that the user can react accordingly. Similarly,
a change of the host state to “maintenance” should also be notified to the
users.

What is changed

A new host_status parameter is added to the /servers/{server_id} and
/servers/detail endpoints in microversion 2.16. By this new parameter
user can get additional state information about the host.

host_status possible values where next value in list can override the
previous:

	UP if nova-compute is up.

	UNKNOWN if nova-compute status was not reported by servicegroup driver
within configured time period. Default is within 60 seconds,
but can be changed with service_down_time in nova.conf.

	DOWN if nova-compute was forced down.

	MAINTENANCE if nova-compute was disabled. MAINTENANCE in API directly
means nova-compute service is disabled. Different wording is used to avoid
the impression that the whole host is down, as only scheduling of new VMs
is disabled.

	Empty string indicates there is no host for server.

host_status is returned in the response in case the policy permits. By
default the policy is for admin only in Nova policy.json:

"os_compute_api:servers:show:host_status": "rule:admin_api"

For an NFV use case this has to also be enabled for the owner of the VM:

"os_compute_api:servers:show:host_status": "rule:admin_or_owner"

REST API examples:

Case where nova-compute is enabled and reporting normally:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "UP",
 ...
 }
}

Case where nova-compute is enabled, but not reporting normally:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "UNKNOWN",
 ...
 }
}

Case where nova-compute is enabled, but forced_down:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "DOWN",
 ...
 }
}

Case where nova-compute is disabled:

GET /v2.1/{tenant_id}/servers/{server_id}

200 OK
{
 "server": {
 "host_status": "MAINTENANCE",
 ...
 }
}

Host Status is also visible in python-novaclient:

+-------+------+--------+------------+-------------+----------+-------------+
| ID | Name | Status | Task State | Power State | Networks | Host Status |
+-------+------+--------+------------+-------------+----------+-------------+
| 9a... | vm1 | ACTIVE | - | RUNNING | xnet=... | UP |
+-------+------+--------+------------+-------------+----------+-------------+

Links:

[1] Manual for OpenStack NOVA API for marking host down
http://artifacts.opnfv.org/doctor/docs/manuals/mark-host-down_manual.html

[2] OpenStack compute manual page
http://developer.openstack.org/api-ref-compute-v2.1.html#compute-v2.1

OpenStack NOVA API for marking host down.

Related Blueprints:

https://blueprints.launchpad.net/nova/+spec/mark-host-down
https://blueprints.launchpad.net/python-novaclient/+spec/support-force-down-service

What the API is for

This API will give external fault monitoring system a possibility of telling
OpenStack Nova fast that compute host is down. This will immediately enable
calling of evacuation of any VM on host and further enabling faster HA
actions.

What this API does

In OpenStack the nova-compute service state can represent the compute host
state and this new API is used to force this service down. It is assumed
that the one calling this API has made sure the host is also fenced or
powered down. This is important, so there is no chance same VM instance will
appear twice in case evacuated to new compute host. When host is recovered
by any means, the external system is responsible of calling the API again to
disable forced_down flag and let the host nova-compute service report again
host being up. If network fenced host come up again it should not boot VMs
it had if figuring out they are evacuated to other compute host. The
decision of deleting or booting VMs there used to be on host should be
enhanced later to be more reliable by Nova blueprint:
https://blueprints.launchpad.net/nova/+spec/robustify-evacuate

REST API for forcing down:

Parameter explanations:
tenant_id: Identifier of the tenant.
binary: Compute service binary name.
host: Compute host name.
forced_down: Compute service forced down flag.
token: Token received after successful authentication.
service_host_ip: Serving controller node ip.

request:
PUT /v2.1/{tenant_id}/os-services/force-down
{
“binary”: “nova-compute”,
“host”: “compute1”,
“forced_down”: true
}

response:
200 OK
{
“service”: {
“host”: “compute1”,
“binary”: “nova-compute”,
“forced_down”: true
}
}

Example:
curl -g -i -X PUT http://{service_host_ip}:8774/v2.1/{tenant_id}/os-services
/force-down -H “Content-Type: application/json” -H “Accept: application/json
” -H “X-OpenStack-Nova-API-Version: 2.11” -H “X-Auth-Token: {token}” -d ‘{“b
inary”: “nova-compute”, “host”: “compute1”, “forced_down”: true}’

CLI for forcing down:

nova service-force-down <hostname> nova-compute

Example:
nova service-force-down compute1 nova-compute

REST API for disabling forced down:

Parameter explanations:
tenant_id: Identifier of the tenant.
binary: Compute service binary name.
host: Compute host name.
forced_down: Compute service forced down flag.
token: Token received after successful authentication.
service_host_ip: Serving controller node ip.

request:
PUT /v2.1/{tenant_id}/os-services/force-down
{
“binary”: “nova-compute”,
“host”: “compute1”,
“forced_down”: false
}

response:
200 OK
{
“service”: {
“host”: “compute1”,
“binary”: “nova-compute”,
“forced_down”: false
}
}

Example:
curl -g -i -X PUT http://{service_host_ip}:8774/v2.1/{tenant_id}/os-services
/force-down -H “Content-Type: application/json” -H “Accept: application/json
” -H “X-OpenStack-Nova-API-Version: 2.11” -H “X-Auth-Token: {token}” -d ‘{“b
inary”: “nova-compute”, “host”: “compute1”, “forced_down”: false}’

CLI for disabling forced down:

nova service-force-down –unset <hostname> nova-compute

Example:
nova service-force-down –unset compute1 nova-compute

Monitor Types and Limitations

Currently there are two monitor types supported: sample and collectd

Sample Monitor

Sample monitor type pings the compute host from the control host and calculates the
notification time after the ping timeout.
Also if inspector type is sample, the compute node needs to communicate with the control
node on port 12345. This port needs to be opened for incomming traffic on control node.

Collectd Monitor

Collectd monitor type uses collectd daemon running ovs_events plugin. Collectd runs on
compute to send instant notification to the control node. The notification time is
calculated by using the difference of time at which compute node sends notification to
control node and the time at which consumer is notified. The time on control and compute
node has to be synchronized for this reason. For further details on setting up collectd
on the compute node, use the following link:
<barometer:release/userguide/feature.userguide>

Collectd monitors an interface managed by OVS. If the interface is not be assigned
an IP, the user has to provide the name of interface to be monitored. The command to
launch the doctor test in that case is:
MONITOR_TYPE=collectd INSPECTOR_TYPE=sample INTERFACE_NAME=example_iface ./run.sh

If the interface name or IP is not provided, the collectd monitor type will monitor the
default management interface. This may result in the failure of doctor run.sh test case.
The test case sets the monitored interface down and if the inspector (sample or congress)
is running on the same subnet, collectd monitor will not be able to communicate with it.

Doctor Development Guide

	Testing Doctor
	Run Test Script

	Run Functest Suite

	Tips

Testing Doctor

You have two options to test Doctor functions with the script developed
for doctor CI.

You need to install OpenStack and other OPNFV components except Doctor Sample
Inspector, Sample Monitor and Sample Consumer, as these will be launched in
this script. You are encouraged to use OPNFV official installers, but you can
also deploy all components with other installers such as devstack or manual
operation. In those cases, the versions of all components shall be matched with
the versions of them in OPNFV specific release.

Run Test Script

Doctor project has own testing script under doctor/doctor_tests [https://git.opnfv.org/doctor/tree/doctor_tests]. This test script
can be used for functional testing agained an OPNFV deployment.

Before running this script, make sure OpenStack env parameters are set properly
(See e.g. OpenStackClient Configuration [https://docs.openstack.org/python-openstackclient/latest/configuration/index.html]), so that Doctor Inspector can operate
OpenStack services.

Doctor now supports different test cases and for that you might want to
export TEST_CASE with different values:

#Fault management (default)
export TEST_CASE='fault_management'
#Maintenance (requires 3 compute nodes)
export TEST_CASE='maintenance'
#Run both tests cases
export TEST_CASE='all'

Run Python Test Script

You can run the python script as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor
cd doctor && tox

You can see all the configurations with default values in sample configuration
file doctor.sample.conf [https://git.opnfv.org/doctor/tree/etc/doctor.sample.conf]. And you can also modify the file to meet your
environment and then run the test.

In OPNFV Apex jumphost you can run Doctor testing as follows using tox:

#Before Gambia: overcloudrc.v3
source overcloudrc
export INSTALLER_IP=${INSTALLER_IP}
export INSTALLER_TYPE=${INSTALLER_TYPE}
git clone https://gerrit.opnfv.org/gerrit/doctor
cd doctor
sudo -E tox

Run Functest Suite

Functest supports Doctor testing by triggering the test script above in a
Functest container. You can run the Doctor test with the following steps:

DOCKER_TAG=latest
docker pull docker.io/opnfv/functest-features:${DOCKER_TAG}
docker run --privileged=true -id \
 -e INSTALLER_TYPE=${INSTALLER_TYPE} \
 -e INSTALLER_IP=${INSTALLER_IP} \
 -e INSPECTOR_TYPE=sample \
 docker.io/opnfv/functest-features:${DOCKER_TAG} /bin/bash
docker exec <container_id> functest testcase run doctor-notification

See Functest Userguide for more information.

For testing with stable version, change DOCKER_TAG to ‘stable’ or other release
tag identifier.

Tips

Platform overview

Doctor platform provides these features since Danube Release [https://wiki.opnfv.org/display/SWREL/Danube]:

	Immediate Notification

	Consistent resource state awareness for compute host down

	Valid compute host status given to VM owner

These features enable high availability of Network Services on top of
the virtualized infrastructure. Immediate notification allows VNF managers
(VNFM) to process recovery actions promptly once a failure has occurred.
Same framework can also be utilized to have VNFM awareness about
infrastructure maintenance.

Consistency of resource state is necessary to execute recovery actions
properly in the VIM.

Ability to query host status gives VM owner the possibility to get
consistent state information through an API in case of a compute host
fault.

The Doctor platform consists of the following components:

	OpenStack Compute (Nova)

	OpenStack Networking (Neutron)

	OpenStack Telemetry (Ceilometer)

	OpenStack Alarming (AODH)

	Doctor Sample Inspector, OpenStack Congress or OpenStack Vitrage

	Doctor Sample Monitor or any monitor supported by Congress or Vitrage

Note

Doctor Sample Monitor is used in Doctor testing. However in real
implementation like Vitrage, there are several other monitors supported.

You can see an overview of the Doctor platform and how components interact in
figure-p1.

[image: ../../../_images/Fault-management-design.png]
Doctor platform and typical sequence

Detailed information on the Doctor architecture can be found in the Doctor
requirements documentation:
http://artifacts.opnfv.org/doctor/docs/requirements/05-implementation.html

Running test cases

Functest will call the “doctor_tests/main.py” in Doctor to run the test job.
Doctor testing can also be triggered by tox on OPNFV installer jumphost. Tox
is normally used for functional, module and coding style testing in Python
project.

Currently, ‘Apex’, ‘Daisy’, ‘Fuel’ and ‘local’ installer are supported.

Fault management use case

	A consumer of the NFVI wants to receive immediate notifications about faults
in the NFVI affecting the proper functioning of the virtual resources.
Therefore, such faults have to be detected as quickly as possible, and, when
a critical error is observed, the affected consumer is immediately informed
about the fault and can switch over to the STBY configuration.

The faults to be monitored (and at which detection rate) will be configured by
the consumer. Once a fault is detected, the Inspector in the Doctor
architecture will check the resource map maintained by the Controller, to find
out which virtual resources are affected and then update the resources state.
The Notifier will receive the failure event requests sent from the Controller,
and notify the consumer(s) of the affected resources according to the alarm
configuration.

Detailed workflow information is as follows:

	Consumer(VNFM): (step 0) creates resources (network, server/instance) and an
event alarm on state down notification of that server/instance or Neutron
port.

	Monitor: (step 1) periodically checks nodes, such as ping from/to each
dplane nic to/from gw of node, (step 2) once it fails to send out event
with “raw” fault event information to Inspector

	Inspector: when it receives an event, it will (step 3) mark the host down
(“mark-host-down”), (step 4) map the PM to VM, and change the VM status to
down. In network failure case, also Neutron port is changed to down.

	Controller: (step 5) sends out instance update event to Ceilometer. In network
failure case, also Neutron port is changed to down and corresponding event is
sent to Ceilometer.

	Notifier: (step 6) Ceilometer transforms and passes the events to AODH,
(step 7) AODH will evaluate events with the registered alarm definitions,
then (step 8) it will fire the alarm to the “consumer” who owns the
instance

	Consumer(VNFM): (step 9) receives the event and (step 10) recreates a new
instance

Fault management test case

Functest will call the ‘doctor-test’ command in Doctor to run the test job.

The following steps are executed:

Firstly, get the installer ip according to the installer type. Then ssh to
the installer node to get the private key for accessing to the cloud. As
‘fuel’ installer, ssh to the controller node to modify nova and ceilometer
configurations.

Secondly, prepare image for booting VM, then create a test project and test
user (both default to doctor) for the Doctor tests.

Thirdly, boot a VM under the doctor project and check the VM status to verify
that the VM is launched completely. Then get the compute host info where the VM
is launched to verify connectivity to the target compute host. Get the consumer
ip according to the route to compute ip and create an alarm event in Ceilometer
using the consumer ip.

Fourthly, the Doctor components are started, and, based on the above preparation,
a failure is injected to the system, i.e. the network of compute host is
disabled for 3 minutes. To ensure the host is down, the status of the host
will be checked.

Finally, the notification time, i.e. the time between the execution of step 2
(Monitor detects failure) and step 9 (Consumer receives failure notification)
is calculated.

According to the Doctor requirements, the Doctor test is successful if the
notification time is below 1 second.

Maintenance use case

	A consumer of the NFVI wants to interact with NFVI maintenance, upgrade,
scaling and to have graceful retirement. Receiving notifications over these
NFVI events and responding to those within given time window, consumer can
guarantee zero downtime to his service.

The maintenance use case adds the Doctor platform an admin tool and an
app manager component. Overview of maintenance components can be seen in
figure-p2.

[image: ../../../_images/Maintenance-design.png]
Doctor platform components in maintenance use case

In maintenance use case, app manager (VNFM) will subscribe to maintenance
notifications triggered by project specific alarms through AODH. This is the way
it gets to know different NFVI maintenance, upgrade and scaling operations that
effect to its instances. The app manager can do actions depicted in green
color or tell admin tool to do admin actions depicted in orange color

Any infrastructure component like Inspector can subscribe to maintenance
notifications triggered by host specific alarms through AODH. Subscribing to the
notifications needs admin privileges and can tell when a host is out of use as
in maintenance and when it is taken back to production.

Maintenance test case

Maintenance test case is currently running in our Apex CI and executed by tox.
This is because the special limitation mentioned below and also the fact we
currently have only sample implementation as a proof of concept. Environmental
variable TEST_CASE=’maintenance’ needs to be used when executing
“doctor_tests/main.py”. Test case workflow can be seen in figure-p3.

[image: ../../../_images/Maintenance-workflow.png]
Maintenance test case workflow

In test case all compute capacity will be consumed with project (VNF) instances.
For redundant services on instances and an empty compute needed for maintenance,
test case will need at least 3 compute nodes in system. There will be 2
instances on each compute, so minimum number of VCPUs is also 2. Depending on
how many compute nodes there is application will always have 2 redundant
instances (ACT-STDBY) on different compute nodes and rest of the compute
capacity will be filled with non-redundant instances.

For each project specific maintenance message there is a time window for
app manager to make any needed action. This will guarantee zero
down time for his service. All replies back are done by calling admin tool API
given in the message.

The following steps are executed:

Infrastructure admin will call admin tool API to trigger maintenance for
compute hosts having instances belonging to a VNF.

Project specific MAINTENANCE notification is triggered to tell app manager
that his instances are going to hit by infrastructure maintenance at a specific
point in time. app manager will call admin tool API to answer back
ACK_MAINTENANCE.

When the time comes to start the actual maintenance workflow in admin tool,
a DOWN_SCALE notification is triggered as there is no empty compute node for
maintenance (or compute upgrade). Project receives corresponding alarm and scales
down instances and call admin tool API to answer back ACK_DOWN_SCALE.

As it might happen instances are not scaled down (removed) from a single
compute node, admin tool might need to figure out what compute node should be
made empty first and send PREPARE_MAINTENANCE to project telling which instance
needs to be migrated to have the needed empty compute. app manager makes sure
he is ready to migrate instance and call admin tool API to answer back
ACK_PREPARE_MAINTENANCE. admin tool will make the migration and answer
ADMIN_ACTION_DONE, so app manager knows instance can be again used.

figure-p3 has next a light blue section of actions to be done for each
compute. However as we now have one empty compute, we will maintain/upgrade that
first. So on first round, we can straight put compute in maintenance and send
admin level host specific IN_MAINTENANCE message. This is caught by Inspector
to know host is down for maintenance. Inspector can now disable any automatic
fault management actions for the host as it can be down for a purpose. After
admin tool has completed maintenance/upgrade MAINTENANCE_COMPLETE message
is sent to tell host is back in production.

Next rounds we always have instances on compute, so we need to have
PLANNED_MAINTANANCE message to tell that those instances are now going to hit
by maintenance. When app manager now receives this message, he knows instances
to be moved away from compute will now move to already maintained/upgraded host.
In test case no upgrade is done on application side to upgrade instances
according to new infrastructure capabilities, but this could be done here as
this information is also passed in the message. This might be just upgrading
some RPMs, but also totally re-instantiating instance with a new flavor. Now if
application runs an active side of a redundant instance on this compute,
a switch over will be done. After app manager is ready he will call
admin tool API to answer back ACK_PLANNED_MAINTENANCE. In test case the
answer is migrate, so admin tool will migrate instances and reply
ADMIN_ACTION_DONE and then app manager knows instances can be again used.
Then we are ready to make the actual maintenance as previously trough
IN_MAINTENANCE and MAINTENANCE_COMPLETE steps.

After all computes are maintained, admin tool can send MAINTENANCE_COMPLETE
to tell maintenance/upgrade is now complete. For app manager this means he
can scale back to full capacity.

This is the current sample implementation and test case. Real life
implementation is started in OpenStack Fenix project and there we should
eventually address requirements more deeply and update the test case with Fenix
implementation.

References and bibliography

	DOCT

	OPNFV, “Doctor” requirements project, [Online]. Available at
https://wiki.opnfv.org/doctor

	PRED

	OPNFV, “Data Collection for Failure Prediction” requirements project
[Online]. Available at https://wiki.opnfv.org/prediction

	OPSK

	OpenStack, [Online]. Available at https://www.openstack.org/

	CEIL

	OpenStack Telemetry (Ceilometer), [Online]. Available at
https://wiki.openstack.org/wiki/Ceilometer

	NOVA

	OpenStack Nova, [Online]. Available at
https://wiki.openstack.org/wiki/Nova

	NEUT

	OpenStack Neutron, [Online]. Available at
https://wiki.openstack.org/wiki/Neutron

	CIND

	OpenStack Cinder, [Online]. Available at
https://wiki.openstack.org/wiki/Cinder

	MONA

	OpenStack Monasca, [Online], Available at
https://wiki.openstack.org/wiki/Monasca

	OSAG

	OpenStack Cloud Administrator Guide, [Online]. Available at
http://docs.openstack.org/admin-guide-cloud/content/

	ZABB

	ZABBIX, the Enterprise-class Monitoring Solution for Everyone,
[Online]. Available at http://www.zabbix.com/

	ENFV

	ETSI NFV, [Online]. Available at
http://www.etsi.org/technologies-clusters/technologies/nfv

 Definition of terms

Different SDOs and communities use different terminology related to
NFV/Cloud/SDN. This list tries to define an OPNFV terminology,
mapping/translating the OPNFV terms to terminology used in other contexts.

	ACT-STBY configuration

	Failover configuration common in Telco deployments. It enables the
operator to use a standby (STBY) instance to take over the functionality
of a failed active (ACT) instance.

	Administrator

	Administrator of the system, e.g. OAM in Telco context.

	Consumer

	User-side Manager; consumer of the interfaces produced by the VIM; VNFM,
NFVO, or Orchestrator in ETSI NFV [ENFV] terminology.

	EPC

	Evolved Packet Core, the main component of the core network architecture
of 3GPP’s LTE communication standard.

	MME

	Mobility Management Entity, an entity in the EPC dedicated to mobility
management.

	NFV

	Network Function Virtualization

	NFVI

	Network Function Virtualization Infrastructure; totality of all hardware
and software components which build up the environment in which VNFs are
deployed.

	S/P-GW

	Serving/PDN-Gateway, two entities in the EPC dedicated to routing user
data packets and providing connectivity from the UE to external packet
data networks (PDN), respectively.

	Physical resource

	Actual resources in NFVI; not visible to Consumer.

	VNFM

	Virtualized Network Function Manager; functional block that is
responsible for the lifecycle management of VNF.

	NFVO

	Network Functions Virtualization Orchestrator; functional block that
manages the Network Service (NS) lifecycle and coordinates the
management of NS lifecycle, VNF lifecycle (supported by the VNFM) and
NFVI resources (supported by the VIM) to ensure an optimized allocation
of the necessary resources and connectivity.

	VIM

	Virtualized Infrastructure Manager; functional block that is responsible
for controlling and managing the NFVI compute, storage and network
resources, usually within one operator’s Infrastructure Domain, e.g.
NFVI Point of Presence (NFVI-PoP).

	Virtual Machine (VM)

	Virtualized computation environment that behaves very much like a
physical computer/server.

	Virtual network

	Virtual network routes information among the network interfaces of VM
instances and physical network interfaces, providing the necessary
connectivity.

	Virtual resource

	A Virtual Machine (VM), a virtual network, or virtualized storage;
Offered resources to “Consumer” as result of infrastructure
virtualization; visible to Consumer.

	Virtual Storage

	Virtualized non-volatile storage allocated to a VM.

	VNF

	Virtualized Network Function. Implementation of a Network Function that
can be deployed on a Network Function Virtualization Infrastructure
(NFVI).

Doctor Configuration

OPNFV installers install most components of Doctor framework including
OpenStack Nova, Neutron and Cinder (Doctor Controller) and OpenStack
Ceilometer and Aodh (Doctor Notifier) except Doctor Monitor.

After major components of OPNFV are deployed, you can setup Doctor functions
by following instructions in this section. You can also learn detailed
steps for all supported installers under doctor/doctor_tests/installer [https://git.opnfv.org/doctor/tree/doctor_tests/installer].

Doctor Inspector

You need to configure one of Doctor Inspectors below. You can also learn detailed steps for
all supported Inspectors under doctor/doctor_tests/inspector [https://git.opnfv.org/doctor/tree/doctor_tests/inspector].

Sample Inspector

Sample Inspector is intended to show minimum functions of Doctor Inspector.

Sample Inspector is suggested to be placed in one of the controller nodes,
but it can be put on any host where Sample Inspector can reach and access
the OpenStack Controllers (e.g. Nova, Neutron).

Make sure OpenStack env parameters are set properly, so that Sample Inspector
can issue admin actions such as compute host force-down and state update of VM.

Then, you can configure Sample Inspector as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor
cd doctor/doctor_tests/inspector
INSPECTOR_PORT=12345
python sample.py $INSPECTOR_PORT > inspector.log 2>&1 &

Congress

OpenStack Congress [https://governance.openstack.org/tc/reference/projects/congress.html] is a Governance as a Service (previously Policy as a
Service). Congress implements Doctor Inspector as it can inspect a fault
situation and propagate errors onto other entities.

Congress is deployed by OPNFV Apex installer. You need to enable doctor
datasource driver and set policy rules. By the example configuration below,
Congress will force down nova compute service when it received a fault event
of that compute host. Also, Congress will set the state of all VMs running on
that host from ACTIVE to ERROR state.

openstack congress datasource create doctor "doctor"

openstack congress datasource create --config api_version=$NOVA_MICRO_VERSION \
 --config username=$OS_USERNAME --config tenant_name=$OS_TENANT_NAME \
 --config password=$OS_PASSWORD --config auth_url=$OS_AUTH_URL \
 nova "nova21"

openstack congress policy rule create \
 --name host_down classification \
 'host_down(host) :-
 doctor:events(hostname=host, type="compute.host.down", status="down")'

openstack congress policy rule create \
 --name active_instance_in_host classification \
 'active_instance_in_host(vmid, host) :-
 nova:servers(id=vmid, host_name=host, status="ACTIVE")'

openstack congress policy rule create \
 --name host_force_down classification \
 'execute[nova:services.force_down(host, "nova-compute", "True")] :-
 host_down(host)'

openstack congress policy rule create \
 --name error_vm_states classification \
 'execute[nova:servers.reset_state(vmid, "error")] :-
 host_down(host),
 active_instance_in_host(vmid, host)'

Vitrage

OpenStack Vitrage [https://wiki.openstack.org/wiki/Vitrage] is an RCA (Root Cause Analysis) service for organizing,
analyzing and expanding OpenStack alarms & events. Vitrage implements Doctor
Inspector, as it receives a notification that a host is down and calls Nova
force-down API. In addition, it raises alarms on the instances running on this
host.

Vitrage is not deployed by OPNFV installers yet. It can be installed either on
top of a devstack environment, or on top of a real OpenStack environment. See
Vitrage Installation [https://docs.openstack.org/developer/vitrage/installation-and-configuration.html]

Doctor SB API and a Doctor datasource were implemented in Vitrage in the Ocata
release. The Doctor datasource is enabled by default.

After Vitrage is installed and configured, there is a need to configure it to
support the Doctor use case. This can be done in a few steps:

	Make sure that ‘aodh’ and ‘doctor’ are included in the list of datasource
types in /etc/vitrage/vitrage.conf:

[datasources]
types = aodh,doctor,nova.host,nova.instance,nova.zone,static,cinder.volume,neutron.network,neutron.port,heat.stack

	Enable the Vitrage Nova notifier. Set the following line in
/etc/vitrage/vitrage.conf:

[DEFAULT]
notifiers = nova

	Add a template that is responsible to call Nova force-down if Vitrage
receives a ‘compute.host.down’ alarm. Copy template [https://github.com/openstack/vitrage/blob/master/etc/vitrage/templates.sample/host_down_scenarios.yaml] and place it under
/etc/vitrage/templates

	Restart the vitrage-graph and vitrage-notifier services

Doctor Monitors

Doctor Monitors are suggested to be placed in one of the controller nodes,
but those can be put on any host which is reachable to target compute host and
accessible by the Doctor Inspector.
You need to configure Monitors for all compute hosts one by one. You can also learn detailed
steps for all supported monitors under doctor/doctor_tests/monitor [https://git.opnfv.org/doctor/tree/doctor_tests/monitor].

Sample Monitor
You can configure the Sample Monitor as follows (Example for Apex deployment):

git clone https://gerrit.opnfv.org/gerrit/doctor
cd doctor/doctor_tests/monitor
INSPECTOR_PORT=12345
COMPUTE_HOST='overcloud-novacompute-1.localdomain.com'
COMPUTE_IP=192.30.9.5
sudo python sample.py "$COMPUTE_HOST" "$COMPUTE_IP" \
 "http://127.0.0.1:$INSPECTOR_PORT/events" > monitor.log 2>&1 &

Collectd Monitor

Doctor Installation Guide

	Doctor Configuration
	Doctor Inspector

	Doctor Monitors

Doctor Release Notes

	Version history
	Important notes

	Summary

	Release Data

	Deliverables
	Software deliverables

	Documentation deliverables

	Known Limitations, Issues and Workarounds

	Test Result

	References

 This document provides the release notes for Gambia of Doctor.

	Version history

	Important notes

	Summary

	Release Data

	Version change

	Reason for version

	Deliverables

	Software deliverables

	Documentation deliverables

	Known Limitations, Issues and Workarounds

	System Limitations

	Known issues

	Workarounds

	Test Result

	Doctor CI results with TEST_CASE=’fault_management’ and INSPECTOR_TYPE=sample

	Doctor CI results with TEST_CASE=’fault_management’ and INSPECTOR_TYPE=congress

	Doctor Functest results with TEST_CASE=’fault_management’

	Doctor CI results with TEST_CASE=’maintenance’

	Doctor Functest results with TEST_CASE=’maintenance’

	References

Version history

	Date

	Ver.

	Author

	Comment

	2018-09-20

	7.0.0

	Tomi Juvonen

	

Important notes

In Gambia release, Doctor has been working with our second use case over
maintenance. Design guideline is now done and test case exists with sample
maintenance workflow code implemented in Doctor. Work has also started to have
the real implementation done in the OpenStack Fenix project
https://wiki.openstack.org/wiki/Fenix.

Doctor CI testing has now moved to use tox on jumphots instead of running test
through features container. Also in Apex we use OpenStack services running in
containers. Functest daily testing supports Doctor fault management test case
for Apex, Daisy and Fuel installers. This testing is done through features
container.

In this release, Doctor has not been working with the fault management use case as
the basic framework has been already done. However, we might need to get back to
it later to better meet the tough industry requirements as well as requirements
from edge, containers and 5G.

Summary

Gambia Doctor framework uses OpenStack Queens integrated into its test cases.
Compared to the previous release, the Heat project is also being used in the
maintenance test case.

Release Data

Doctor changes

	commit-ID

	Subject

	5b3f5937e7b861fca46b2a6b2d6708866b800f95

	fix building docs

	2ca5924081ce4784f599437707bd32807aa155ce

	Fix SSH client connection reset

	baac6579556f8216b36db0d0f87f9c2d4f8b4ef5

	Support Apex with services in containers

	23bf63c4616040cb0d69cd26238af2a4a7c00a90

	fix the username to login undercloud in Apex

	61eb3927ada784cc3dffb5ddd17f66e47871f708

	Local Documentation Builds

	0f1dd4314b9e0247d9af7af6df2410462423aeca

	Updated from global requirements

	2d4a9f0c0a93797da6534583f6e74553a4b634be

	Fix links to remove references to submodules

	3ddc2392b0ed364eede49ff006d64df3ea456350

	Gambia release notes

	825a0a0dd5e8028129b782ed21c549586257b1c5

	delete doctor datasource in congress when cleanup

	fcf53129ab2b18b84571faff13d7cb118b3a41b3

	run profile even the notification time is larger than 1S

	495965d0336d42fc36494c81fd15cee2f34c96e9

	Update and add test case

	da25598a6a31abe0579ffed12d1719e5ff75f9a7

	bugfix: add doctor datasource in congress

	f9e1e3b1ae4be80bc2dc61d9c4213c81c091ea72

	Update the maintenance design document

	4639f15e6db2f1480b41f6fbfd11d70312d4e421

	Add maintenance test code

	b54cbc5dd2d32fcb27238680b4657ed384d021c5

	Add setup and cleanup for maintenance test

	b2bb504032ac81a2ed3f404113b097d9ce3d7f14

	bugfix: kill the stunnel when cleanup

	eaeb3c0f9dc9e6645a159d0a78b9fc181fce53d4

	add ssh_keyfile for connect to installer in Apex

	dcbe7bf1c26052b0e95d209254e7273aa1eaace1

	Add tox and test case to testing document

	0f607cb5efd91ee497346b7f792dfa844d15595c

	enlarge the time of link down

	1351038a65739b8d799820de515178326ad05f7b

	bugfix: fix the filename of ssh tunnel

	e70bf248daac03eee6b449cd1654d2ee6265dd8c

	Use py34 instead of py35

	2a60d460eaf018951456451077b7118b60219b32

	add INSPECTOR_TYPE and TEST_CASE to tox env

	2043ceeb08c1eca849daeb2b3696d385425ba061

	[consumer] fix default value for port number

Releng changes

	commit-ID

	Subject

	c87309f5a75ccc5d595f708817b97793c24c4387

	Add Doctor maintenance job

	bd16a9756ffd0743e143f0f2f966da8dd666c7a3

	remove congress test in Daisy

	c47aaaa53c91aae93877f2532c72374beaa4eabe

	remove fuel job in Doctor

	ab2fed2522eaf82ea7c63dd05008a37c56e825d0

	use ‘workspace-cleanup’ plugin in publisher

	3aaed5cf40092744f1b87680b9205a2901baecf3

	clean the workspace in the publisher

	50151eb3717edd4ddd996f3705fbe1732de7f3b7

	run tox with ‘sudo’

	a3adc85ecb52f5d19ec4e9c49ca1ac35aa429ff9

	remove inspector variable form job template

	adfbaf2a3e8487e4c9152bf864a653a0425b8582

	run doctor tests with different inspectors in sequence

	2e98e56224cd550cb3bf9798e420eece28139bd9

	add the ssh_key info if the key_file is exist

	c109c271018e9a85d94be1b9b468338d64589684

	prepare installer info for doctor test

	57cbefc7160958eae1d49e4753779180a25864af

	use py34 for tox

	3547754e808a581b09c9d22e013a7d986d9f6cd1

	specify the cacert file when it exits

	ef4f36aa1c2ff0819d73cde44f84b99a42e15c7e

	bugfix: wrong usage of ‘!include-raw’

	0e0e0d4cb71fb27b1789a2bef2d3c4ff313e67ff

	use tox instead of functest for doctor CI jobs

	5b22f1b95feacaec0380f6a7543cbf510b628451

	pass value to parameters

	44ab0cea07fa2a734c4f6b80776ad48fd006d1b8

	Doctor job bugfix: fix the scenario

	17617f1c0a78c7bdad0d11d329a6c7e119cbbddd

	bugfix: run doctor tests parallelly

	811e4ef7f4c37b7bc246afc34ff880c014ecc05d

	delete ‘opnfv-build-ubuntu-defaults’ parameters for doctor verify job

	0705f31ab5bc54c073df120cbe0fe62cf10f9a81

	delete the ‘node’ parameter in ‘doctor-slave-parameter’ macro

	304151b15f9d7241db8c5fea067cafe048287d84

	fix the default node label for doctor test

	a6963f92f015a33b44b27199886952205499b44c

	Fix project name

	f122bfed998b3b0e0178106a7538377c609c6512

	add a default value for SSH_KEY

Version change

Module version changes

	OpenStack has changed from Pike-1 to Queens-1

Document version changes

These documents have been updated in Gambia release

	Testing document
docs/development/overview/testing.rst

	Doctor scenario in functest
docs/development/overview/functest_scenario/doctor-scenario-in-functest.rst

	Maintenance design guideline
docs/development/design/maintenance-design-guideline.rst

Reason for version

Documentation is updated due to tox usage in testing and adding maintenance
use case related documentation.

Feature additions

	JIRA REFERENCE

	SLOGAN

	DOCTOR-106

	Maintenance scenario

	DOCTOR-125

	Maintenance design document according to our test case

	DOCTOR-126

	Use Tox instead of Functest for doctor CI jobs

	DOCTOR-127

	Maintenance test POD

	DOCTOR-130

	Apex with containers

Deliverables

Software deliverables

None

Documentation deliverables

https://git.opnfv.org/doctor/tree/docs

Known Limitations, Issues and Workarounds

System Limitations

Maintenance test case requirements:

	Minimum number of nodes: 1 Controller, 3 Computes

	Min number of VCPUs: 2 VCPUs for each compute

Known issues

None

Workarounds

None

Test Result

Doctor CI results with TEST_CASE=’fault_management’ and INSPECTOR_TYPE=sample

	TEST-SUITE

	Results:

	INSTALLER_TYPE=’Apex’

	SUCCESS

	INSTALLER_TYPE=’Compass’

	N/A

	INSTALLER_TYPE=’Daisy’

	SUCCESS

	INSTALLER_TYPE=’Fuel’

	No POD

	INSTALLER_TYPE=’Joid’

	N/A

	INSTALLER_TYPE=’Local’

	N/A

Doctor CI results with TEST_CASE=’fault_management’ and INSPECTOR_TYPE=congress

	TEST-SUITE

	Results:

	INSTALLER_TYPE=’Apex’

	FAILED

	INSTALLER_TYPE=’Compass’

	N/A

	INSTALLER_TYPE=’Daisy’

	N/A

	INSTALLER_TYPE=’Fuel’

	No POD

	INSTALLER_TYPE=’Joid’

	N/A

	INSTALLER_TYPE=’Local’

	N/A

Doctor Functest results with TEST_CASE=’fault_management’

	TEST-SUITE

	Results:

	INSTALLER_TYPE=’Apex’

	skipped

	INSTALLER_TYPE=’Compass’

	N/A

	INSTALLER_TYPE=’Daisy’

	skipped

	INSTALLER_TYPE=’Fuel’

	skipped

	INSTALLER_TYPE=’Joid’

	N/A

	INSTALLER_TYPE=’Local’

	N/A

Note: Installer Functest does not currently test features or skips running the
project test cases

Doctor CI results with TEST_CASE=’maintenance’

	TEST-SUITE

	Results:

	INSTALLER_TYPE=’Apex’

	SUCCESS

Doctor Functest results with TEST_CASE=’maintenance’

N/A - Needs special target and currently there is only sample implementation

References

For more information about the OPNFV Doctor latest work, please see:

https://wiki.opnfv.org/display/doctor/Doctor+Home

OPNFV Doctor release notes (Colorado)

Version history

	Date

	Ver.

	Author

	Comment

	2016-09-19

	Colorado 1.0

	Ryota Mibu

	

Important notes

OPNFV Doctor project started as a requirement project and identified gaps
between “as-is” open source software (OSS) and an “ideal” platform for NFV.
Based on this analysis, the Doctor project proposed missing features to
upstream OSS projects. After those features were implemented, OPNFV installer
projects integrated the features to the OPNFV platform and the OPNFV
infra/testing projects verified the functionalities in the OPNFV Labs.

This document provides an overview of the Doctor project in the OPNFV Colorado
release, including new features, known issues and documentation updates.

New features

	Congress as a Doctor Inspector

Since Doctor driver [https://review.openstack.org/#/c/314915/] in OpenStack Congress has been implemented in Mitaka,
OpenStack Congress can now take the role of the Doctor Inspector to correlate
an error in a physical resource to the affected virtual resource(s)
immediately.

Installer support and verification status

Integrated features

Minimal Doctor functionality of VIM is available in the OPNFV platform from
the Brahmaputra release. The basic Doctor framework in VIM consists of a
Controller (Nova) and a Notifier (Ceilometer+Aodh) along with a sample
Inspector and Monitor developed by the Doctor team.
From the Colorado release, key integrated features are:

	Immediate notification upon state update of virtual resource enabled by
Ceilometer and Aodh (Aodh integration)

	Consistent state awareness improved by having nova API to mark nova-compute
service down (Nova: Force compute down)

	Consistent state awareness improved by exposing host status in server (VM)
information via Nova API (Nova: Get valid service status)

	OpenStack Congress enabling policy-based flexible failure correlation
(Congress integration)

OPNFV installer support matrix

In the Brahmaputra release, only one installer (Apex) supported the deployment
of the basic doctor framework by configuring Doctor features. In the Colorado
release, integration of Doctor features progressed in other OPNFV installers.

	Installer

	Aodh
integration

	Nova: Force
compute down

	Nova: Get valid
service status

	Congress
integration

	Apex

	Available

	Available

	Available
(DOCTOR-67 [https://jira.opnfv.org/browse/DOCTOR-67]),
Verified only
for admin users

	Available
(APEX-135 [https://jira.opnfv.org/browse/APEX-135],
APEX-158 [https://jira.opnfv.org/browse/APEX-158]),
Not Verified

	Fuel

	Available
(DOCTOR-58 [https://jira.opnfv.org/browse/DOCTOR-58]),
Not verified

	Available

	Available,
Verified only
for admin users

	N/A
(FUEL-119 [https://jira.opnfv.org/browse/FUEL-119])

	Joid

	Available
(JOID-76 [https://jira.opnfv.org/browse/JOID-76]),
Not verified

	TBC

	TBC

	TBC
(JOID-73 [https://jira.opnfv.org/browse/JOID-73])

	Compass

	Available
(COMPASS-357 [https://jira.opnfv.org/browse/COMPASS-357]),
Not verified

	TBC

	TBC

	N/A
(COMPASS-367 [https://jira.opnfv.org/browse/COMPASS-367])

Note: ‘Not verified’ means that we didn’t verify the functionality by having
our own test scenario running in OPNFV CI pipeline yet.

Documentation updates

	Alarm comparison

A report on the gap analysis across alarm specifications in ETSI NFV IFA,
OPNFV Doctor and OpenStack Aodh has been added, along with some proposals
on how to improve the alignment between SDO specification and OSS
implementation as a future work (DOCTOR-46 [https://jira.opnfv.org/browse/DOCTOR-46]).

	Description of test scenario

The description of the Doctor scenario, which is running as one of the
feature verification scenarios in Functest, has been updated (DOCTOR-53 [https://jira.opnfv.org/browse/DOCTOR-53]).

	Neutron port status update

Design documentation for port status update has been added, intending to
propose new features to OpenStack Neutron.

	SB I/F specification

The initial specification of the Doctor southbound interface, which is for
the Inspector to receive event messages from Monitors, has been added
(DOCTOR-17 [https://jira.opnfv.org/browse/DOCTOR-17]).

Known issues

	Aodh ‘event-alarm’ is not available as default (Fuel)

In Fuel 9.0, Aodh integration for ‘event-alarm’ is not completed.
Ceilometer and Nova would be mis-configured and cannot pass event
notification to Aodh.
You can use fuel-plugin-doctor [https://github.com/openzero-zte/fuel-plugin-doctor] to correct Ceilometer and Nova
configuration as a workaround. See DOCTOR-62 [https://jira.opnfv.org/browse/DOCTOR-62].

	Security notice

Security notice has been raised in *. Please insure that the debug option
of Flask is set to False, before running in production.

	*

	http://lists.opnfv.org/pipermail/opnfv-tech-discuss/2016-September/012610.html

	Performance issue in correct resource status (Fuel)

Although the Doctor project is aiming to ensure that the time interval
between detection and notification to the user is less than 1 second, we
observed that it takes more than 2 seconds in the default OPNFV deployment
using the Fuel installer †.
This issue will be solved by checking the OpenStack configuration and
improving Doctor testing scenario.

	†

	http://lists.opnfv.org/pipermail/opnfv-tech-discuss/2016-September/012542.html

OPNFV Doctor release notes (Danube)

Version history

	Date

	Ver.

	Author

	Comment

	2017-03-31

	Danube 1.0

	Ryota Mibu

	

Important notes

OPNFV Doctor project started as a requirement project and identified gaps
between “as-is” open source software (OSS) and an “ideal” platform for NFV.
Based on this analysis, the Doctor project proposed missing features to
upstream OSS projects. After those features were implemented, OPNFV installer
projects integrated the features to the OPNFV platform and the OPNFV
infra/testing projects verified the functionalities in the OPNFV Labs.

This document provides an overview of the Doctor project in the OPNFV Danube
release, including new features, known issues and documentation updates.

New features

For Danube release, the Doctor project focused primarily on enhancing the
testing tools, enabling additional test scenarios, and support and verification
on a wider range of OPNFV installers.

	Performance profiler PoC

The performance profiler is designed to get timestamp in each checkpoint of
components for further analysis. In Danube, initial PoC implementation of the
perfomance profiler has been added to the Doctor testing tools
by contribution from the QTIP [https://wiki.opnfv.org/display/qtip] team. The tools can now show how long it
takes for each component in a series of processes for fault notification.
Some checkpoints are not covered yet though. To activate this, set the
PROFILER_TYPE=”poc” before running the main script (“tests/run.sh”).
See DOCTOR-72 [https://jira.opnfv.org/browse/DOCTOR-72] for more details.

	Testing with multiple tenant VMs

The Doctor testing tools now supports new testing scenario where multiple
tenant VMs in the system under test can be created (DOCTOR-77 [https://jira.opnfv.org/browse/DOCTOR-77]).
This allows to measure fault notification time/cost with stressed VIM
controllers, in order to see perfomance trends.

Installer support and verification status

Integrated features

Minimal Doctor functionality of VIM is available in the OPNFV platform from
the Brahmaputra release. The basic Doctor framework in VIM consists of a
Controller (Nova) and a Notifier (Ceilometer+Aodh) along with a sample
Inspector and Monitor developed by the Doctor team.

From the Danube release, key integrated feature is:

	Congress as Doctor Inspector

Congress Inspector is now verified with latest vanilla OpenStack without
backporting any patch, like the one we had backported for adding Doctor
driver of Congress in Colorado.

OPNFV installer support matrix

In the Brahmaputra release, only one installer (Apex) supported the deployment
of the basic Doctor framework by configuring Doctor features. In the Danube
release, integration of Doctor features progressed in other OPNFV installers.

	Installer

	Aodh
integration

	Nova: Force
compute down

	Nova: Get valid
service status

	Congress
integration

	Apex

	Available

	Available

	Available,
Verified only
for admin users

	Available

	Fuel

	Available
(DOCTOR-58 [https://jira.opnfv.org/browse/DOCTOR-58])

	Available

	Available,
Verified only
for admin users

	N/A
(FUEL-230 [https://jira.opnfv.org/browse/FUEL-230])

	Joid

	Available
(JOID-76 [https://jira.opnfv.org/browse/JOID-76]),
Not verified

	TBC

	TBC

	Available
(JOID-73 [https://jira.opnfv.org/browse/JOID-73]),
Not verified

	Compass

	Available
(COMPASS-357 [https://jira.opnfv.org/browse/COMPASS-357]),
Not verified

	TBC

	TBC

	Available
(COMPASS-367 [https://jira.opnfv.org/browse/COMPASS-367]),
Not verified

Note: ‘Not verified’ means that we didn’t verify the functionality by having
our own test scenario running in OPNFV CI pipeline yet.

Documentation updates

	Configuration manual for Congress

Steps to configure Congress as Doctor Inspector have been added
to Doctor configuration manual (DOCTOR-85 [https://jira.opnfv.org/browse/DOCTOR-85]).

	Alarm comparison

As part of the review between Doctor Danube (OpenStack Newton) and ETSI NFV
IFA, the alarm comparison table has been updated (DOCTOR-82 [https://jira.opnfv.org/browse/DOCTOR-82]).

	OpenStack mechanisms for fencing

The section on fencing in the requirement document has been updated with more
details of Nova and Neutron (REVIEW#27049 [https://gerrit.opnfv.org/gerrit/27049/]).

	How to test

Two ways to run the Doctor testing tools have been added
(REVIEW#28223 [https://gerrit.opnfv.org/gerrit/28223/]).

You can also find other minor updates in DOCTOR-81 [https://jira.opnfv.org/browse/DOCTOR-81].

Known issues

	Doctor testing scenario is not verified with non-admin user (DOCTOR-80 [https://jira.opnfv.org/browse/DOCTOR-80]).

	Congress Nova driver is relying on deprecated Nova APIs and can lead to
an error (BUG#1670345 [https://bugs.launchpad.net/congress/+bug/1670345]). The workaround for this issue is to specify nova
micro version to 2.34 . Apex is using this workaround for OpenStack Newton
(REVIEW#29463 [https://gerrit.opnfv.org/gerrit/29463/]).

OPNFV Doctor release notes (Euphrates)

This document provides an overview of the Doctor project in the OPNFV Euphrates
release, including new features, known issues and documentation updates.

Version history

	Date

	Ver.

	Author

	Comment

	2017-10-02

	5.0.0

	Ryota Mibu

	

Important notes

OPNFV Doctor project started as a requirement project and identified gaps
between “as-is” open source software (OSS) and an “ideal” platform for NFV.
Based on this analysis, the Doctor project proposed missing features to
upstream OSS projects. After those features were implemented, OPNFV installer
projects integrated the features to the OPNFV platform and the OPNFV
infra/testing projects verified the functionalities in the OPNFV Labs.

For Euphrates release, the Doctor project focused primarily on extending to
network state and refactoring testing code by python.

New features

Doctor now supports network state handling where VIM tells you the actual data
plane port state, utilizing the new feature called `port-dp-status`_ developed
in OpenStack Neutron as the result of our upstreaming efforts.

Installer support and verification status

Integrated features

The testing code for doctor test cases are enhanced by refactoring in python,
and supporting collectd monitor.

The python refactoring improves readability and maintainability of the testing
code in the Doctor repository. This would help Doctor developers as well as
engineers who are referring OPNFV.

From the Euphrates release, key integrated feature is:

	collectd as Doctor Monitor

This is experimental, as CI job is not enabled yet. But, you can see and test
with collectd integrated in Doctor reference architecture.

OPNFV installer support matrix

(TBC)

In the Brahmaputra release, only one installer (Apex) supported the deployment
of the basic Doctor framework by configuring Doctor features. In the Euphrates
release, integration of Doctor features progressed in other OPNFV installers.

	Installer

	Aodh
integration

	Nova: Force
compute down

	Nova: Get valid
service status

	Congress
integration

	Apex

	Available

	Available

	Available

	Available

	Fuel

	Available
(DOCTOR-58 [https://jira.opnfv.org/browse/DOCTOR-58])

	Available

	Available

	N/A
(FUEL-230 [https://jira.opnfv.org/browse/FUEL-230])

	Joid

	Available
(JOID-76 [https://jira.opnfv.org/browse/JOID-76]),
Not verified

	TBC

	TBC

	Available
(JOID-73 [https://jira.opnfv.org/browse/JOID-73]),
Not verified

	Compass

	Available
(COMPASS-357 [https://jira.opnfv.org/browse/COMPASS-357]),
Not verified

	TBC

	TBC

	Available
(COMPASS-367 [https://jira.opnfv.org/browse/COMPASS-367]),
Not verified

Note: ‘Not verified’ means that we didn’t verify the functionality by having
our own test scenario running in OPNFV CI pipeline yet.

Documentation updates

	maintenance detailed spec

The maintenance design document was filed, including suggestions how to
leverage features in OpenStack while developing automated maintenance
capability.

	Inspector design guideline

Known issues

	Testing code for port-data-plane-status in Doctor repository was disabled
in 5.0, as we have problem in neutron client load in CI job container.

OPNFV Doctor release notes (Fraser)

This document provides an overview of the Doctor project in the OPNFV Fraser
release, including new features, known issues and documentation updates.

Version history

	Date

	Ver.

	Author

	Comment

	2018-06-25
2018-05-25
2018-04-23

	6.2.0
6.1.0
6.0.0

	Tomi Juvonen
Tomi Juvonen
Tomi Juvonen

	

Important notes

OPNFV Doctor project started as a requirement project and identified gaps
between “as-is” open source software (OSS) and an “ideal” platform for NFV.
Based on this analysis, the Doctor project proposed missing features to
upstream OSS projects. After those features were implemented, OPNFV installer
projects integrated the features to the OPNFV platform and the OPNFV
infra/testing projects verified the functionalities in the OPNFV Labs. After
Euphrates release Doctor also graduated and became a mature project. This means
it has completed the implementation of the fault management use case. Based on
this implementation, Doctor has now started to implement the second use case on
maintenance.

For Fraser release, the Doctor project completed re-factoring testing code by
python, added support for installers and started working the maintenance use
case. Doctor now supports Apex, Fuel, Joid, Compass and Daisy installer.

New features

Doctor now supports Vitrage as Inspector for local installer.

Installer support and verification status

Integrated features

	The enhancement work for Doctor testing code done by re-factoring in python is
now complete.

	Lint support for the code changes was added.

	Doctor now supports Vitrage as Inspector for local installer.

OPNFV installer support matrix

Doctor has already support for several installers for fault management testing.
This work also continued in the Fraser release. Here is latest additions [*]

	Installer

	Aodh
integration

	Nova: Force
compute down

	Nova: Get valid
service status

	Congress
integration

	Vitrage
integration

	Apex

	Available

	Available

	Available

	Available

	N/A

	Fuel
(MCP)

	Available

	Available

	Available

	TBC

	N/A

	Joid

	Available
Not verified

	TBC

	TBC

	Available
Not verified

	N/A

	Compass

	Available
Not verified

	TBC

	TBC

	Available
Not verified

	N/A

	Daisy*

	Available

	TBC

	TBC

	TBC

	N/A

	Local

	Available
Not verified

	TBC

	TBC

	Available
Not verified

	Available*
Not verified

Note: Local installer is devstack.

Note: ‘Not verified’ means that we didn’t verify the functionality by having
our own test scenario running in OPNFV CI pipeline yet.

Documentation updates

No major updates

Known issues

	Testing code for port-data-plane-status in Doctor repository was disabled
in 5.0, as we have problem in neutron client load in CI job container.

	Maintenance test case work was started in Fraser. Some initial test case code
is available, however it is yet not fully implemented in this release.

 _images/figure2.png
4. Switch to STBY configuration

Administrator

Consumer C1 {| Consumer C2
s

3. Maintenance
Notification
(VM ID)

1. Maintenance
Request
(Server S3)

5. Instruction
(VM ID)

Virtualized Infrastructure Manager
(VIM), e.g. OpenStack

VM-1jVM-2 VM-7 VM-4 6. Execute Instruction
et -
. ServerS1 VML, uM2

server 52

Ownership information

VM-, VM7 Consumer C1

s

Resource

Hypervisor [l Hypervisor [l Hypervisor

Hardware Hardware Hardware
Server 51 Server 52 Server S3

2. Which VMs are affected?
Find Consumer owning the
VM(s) from the database.

Resource Pool

_images/figure3.png
Virtualized Network Functions

VNF1 VNF2 VNF3

Virtualized Infrastructure

Virtual Virtual Virtual
Compute Storage Network

Virtualization Layer

Hardware Resources

Consumer and Administrator

Virtualized Infrastructure
Manager (VIM),
e.g. OpenStack

_images/figure13.png
SubscribeFilterClass

SubscribeResponse message

+SubscriptionlD [1] : Identifier

+VirtualResourceType [0..*] : String
+VirtualResourcelD [0..*] : Identifier
+VirtualResourceState [0..*] : String
+FaultType [0..*] : String
+MinSeverity [0..1] : Integer

+VirtualResourcelnfo [0..*] :
VirtualResourcelnfoClass

FaultNotification message

VirtualResourcelnfoClass

+NotificationID [1] P
+VirtualResourcelnfo [1..*] :
VirtualResourcelnfoClass

| I
I I
I I
I I
| I
I I
| 1 |
I |
I I
| I
| I
| I
| I
| I

— — — — —— —— — — — — — — — — — — — — — — — — — — o—

FaultQuery Operation

FaultQueryResponse message

+VirtualResourcelD [1] : Identifier
+VirtualResourceState [1]: String
+Faults [0..*] : FaultClass

+VirtualResourcelnfo [0..*] :
VirtualResourcelnfoClass

FaultQueryRequest message

FaultQueryFilterClass

+FaultQueryfFilter [1] :
FaultQueryFilterClass

+VirtualResourceType [0..*] : String
+FaultType [0..*] : String
+VirtualResourcelD [0..*] : Identifier
+MinSeverity [0..1] : Integer
+EventStartTime [0..1] : Datetime
+EventEndTime [0..1] : Datetime

=

FaultClass

+FaultiD [1] : Identifier

+Severity [1] : Integer

+EventTime [1] : Datetime
+FaultType [1] : String
+ProbableCause [1]

+isRootCause [0..1] : Boolean
+CorrelatedFaultID [0..*] : Identifier
+FaultDetails [0..*] : Key-Value pairs

_images/figure14.png
+SubscriptionID [1] : Identifier
+VirtualResourcelnfo [0..*] :
VirtualResourcelnfoClass

SubscribeResponse message |

+PhysicalResourceState [1..*] :
PhysicalResourceStateClass

MaintenanceNotification message

+VirtualResourcelnfo [1..*] :
VirtualResourcelnfoClass

e e e e e e e e e e e . G c—— C—— —— C—— —— C— — — c—— — — —

PhysicalResourceStateClass

+PhysicalResourcelnfo [1] :
PhysicalResourcelnfoClass

StateChangeResponse message
1

+PhysicalResourcelD [1] : Identifier
+PhyiscalResourceState [1] : String

1

StateQueryResponse message

+PhysicalResourcelnfo [0..*] :
PhysicalResourcelnfoClass

— — — —)

|

PhysicalResourcelnfoClass

+PhysicalResourcelD [1] : Identifier
+PhysicalResourceState [1] : String
+FirmwareVersion [0..1] : String
+HypervisorVersion [0..1] : String
+ZonelD [0..*] : Identifier
+Metadata [0..*] : Key-value pairs

StateQueryRequest message

StateQueryFilter [1] :
StateQueryFilterClass

[HE

StateQueryFilterClass

+PhysicalResourcelD [0..*] : Identifier

P ———

+PhyiscalResourceState [0..*] : String
+ZonelD [0..*] : ZonelD

_images/figure5b.png
Northbound I/F

Consumer | | Consumer | | consumer .
NFVI VIM - P o Administrator
5. Switch to
SBY

6c. Empty physical resources

6a. Ilﬁstruction

6d. ACK

inate‘{lirtuaIResou‘ elD)

(VirtualResourcelD)
6e. ACK .

7. Switch resources to
“in-maintenance” state

>
(Virtual Resource)

—>

8. MaintenancéNotificatioﬁ
rcelD; State:"i n-m:a i ntenance’i'; Result)

9. Maintenance work/operations
(out of scope of Doctor project)

_images/figure5c.png
Northbound I/F

Consumer | | Consumer | | consumer .
NFVI VIM - P o Administrator
5. Switch to
SBY

6a. Ilﬁstruction

ateVir{uaIResolu_oélD)
6b. Instruction

6¢. ACK

inate VirtualResourcelD)

(Virt:ha IResourceiD)

6d. NACK

7. Switch resources to
“enabled” state

irtual Resourcel D; Error)

—>

8. l\f/laintenancejNotificatioﬁ
sourcelD; State="enabled”; Result)

_images/figure4.png
VI Northbound |/F Consumer

(PhysicalResourcelD) '

2. Fault detection
Fault aggregation

3. Find affected
virtual resources

5. Switch to
SBY

6. Recovery action(s)
(e.g. Migrate/Update/Terminate VirtualContainer)
(out of scope of Doctor project)

_images/figure5a.png
Northbound I/F

NFVI VIM

Consumer Consumer
a1 2

Consumer
ca

Administrator

Physical
serverz

2. Switch resources to
“going-to-maintenance” state

3. Find affected
Consumers /
Virtual Resources

4. Perform maintenance
policy enforcement actions

0 4a. St: eChangeNotlflcatloh

(Vir{‘ ualResourcel

4b. Stage!

(Virtual ResouircelD; Changelype="mal tenance ")

i1 Mainte%\anceRequést
rcelD; ‘tate:”going:—to-maintez:\ance";Timeout]

ChangeType— mai ntenance
ngeNotification

_images/figure6.png
Virtualized Network Functions OpenStack Client

VNF1 VNF2 VNF3 & - Administrator

Virtualized Infrastructure OpenStack (VIM)

Virtual Virtual Virtual
Compute Storage Network Resource
Conf.

Map

Virtualization Layer

Hardware Resources Monitor
Policy

_images/figure7.png
NFVI VI Northbound I/F Consumer

(SubscribeFilter)

uollesadp
9q1425gNS

|
|
:/ 1. SubscribeRequest
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
2. SubscribeResponse \:
!
|
|

(VirtualResourcelnfo)

(SubscriptionID; VirtualResourcelnfo)
__l______________________________I_ ______ -
| |
s ?
3. Monitoring | |
:— event(s) %I :
: (PhysicalResourcelD) : :
| | |
| |
: 4. Fault detection :
: Fault aggregation :
| |
| | |
| |
| |
| 5. Find affected |
: virtual resources :
| |
I T I
| | |
| | |
| e T - 1
| | |
| | [| = I
| | | = |
| | | = T
| . 6. FaultNotification N 5 2 |
| | | (NotificationlD; VirtualResourcelnfo) ot Q_«—"r_ - :
| | | o)
I | I I > |
| I |
| -] T T T T T T T e e e e = B -
| | |
| |
| |
I I 7. Switch to
| | SBY
| |
| I T
I 1 1
: 8. Recovery action(s)
: (e.g. Migrate/Update/Terminate VirtualContainer)
| (out of scope of Doctor project)
| .
| | |
| A
: ~ «
| A - |
| | > a. FaultQueryRequest] |
| : | (FaultQueryFilter) | O :
| | | c o
| I [| M E |
: | ! b. FaultQueryResponse < |
| |
| L |
| |
|

_images/figure10.png
7. Switch to SBY

Applications Administrator

7’

3. StateChange e

7’

9. StateChange Request // 8. Action 1+2. Slggzggtr)gg

Response Re

Y
/

6. Notification

. 5b. Notify all
_—>

NFVI Resource
Map

4. Find Affected
5a.Update State

_images/figure11.png
Application

< _______

Virtualized Infrastructure
(Resource Pool)

_images/conservative-notification.png
Application

0. SetAlarm

5. Event alarm

Virtualized Infrastructure
(Resource Pool)

4. Notify all

_—
I
source Alarm
3. Updat%

2. Find Affected W
: %

[Tongress)

_images/figure1.png
4. Switch to STBY configuration

Consumer C1 Consumer C2 Consumer C3

3. FaultNotification

. (VM ID, Fault ID)
5. Instruction

(VM D)

2. Inform the Consumer?
If YES, find owner of
affected VMs from database

Resource

Map 5

VM-, VM7 Consumer C1

Server— VM mapping

ServerS1 VML VM-2

- e.g. migrate VM
—

Hardware Hardware dware
ServerS1 ServerS2 rver S3

Resource Pool

VM-1 VM-2 VM-7 VM-4 6. Execute Instruction

—_— >
1. Fault Monitoring

- Hardware fault

- Hypervisor fault

- Host OS fault

Virtualized Infrastructure Manager
(VIM), e.g. OpenStack

_images/figure12.png
Event-
Publisher @

for Alarm =

EXI
ba ed)

polll

8 Notification-
& X ¥ driven

'\ . N\ T\A/J ~lha A d s s

A —— '.' H ‘ ‘E VV SNOTINtCut evaluator

_images/figure8.png
/. Switch to SBY
1+2. Subscribe+
Applications [€------ Consumer Response NGt v

8. Action 6. Notification

2 el

) 5c. Notify all

-
Controller
------ o (S
— | Resource Alarm
U VETe Cont.
NFVI . .
5a. Find Affected 5c. (alf) Notify
: 5b. Update State
______ Monitor <
- 5 Failure
4. Raw falilure Policy

nav.xhtml

 Table of Contents

 		
 Fault Management and Maintenance (Doctor)

 		
 Doctor

 		
 Doctor User Guide

 		
 Doctor capabilities and usage

 		
 Doctor

 		
 Design Documents

 		
 Report host fault to update server state immediately

 		
 Notification Alarm Evaluator

 		
 Neutron Port Status Update

 		
 Port data plane status

 		
 Inspector Design Guideline

 		
 Performance Profiler

 		
 Planned Maintenance Design Guideline

 		
 Inspector Design Guideline

 		
 Doctor: Fault Management and Maintenance

 		
 Introduction

 		
 Use cases and scenarios

 		
 High level architecture and general features

 		
 Gap analysis in upstream projects

 		
 Detailed architecture and interface specification

 		
 Summary and conclusion

 		
 Annex: NFVI Faults

 		
 References and bibliography

 		
 Manuals

 		
 OpenStack NOVA API for marking host down.

 		
 Get valid server state

 		
 Indices

_images/Maintenance-design.png
Maintenance Design

Ack + action:
- - App Migrate, Live Migrate, Own action
Application
Re-instantiate (tion) Down or up scale g Manager — Project
e-instantiate (own action
. / VNFM maintenance Schedule
Switch over : subscribe | |event alarm maintenance

project
alarm

Project
NON maintenance

HAPP . notification if Admin tool
| Orchestration project

subscribed
——

Physical Subscribe
NS Host maintenance host event

host
Ceilometer EuN notification alarm
/Aodh Col

Host maintenance alarm|

Physical
host

W Controller

Resource
=l
Virtualized Infrastructure (Resource Pool) @
Admin action Project action OpenstaCk Cloud |
B — — project Entity

Migrate, Live Migrate

Maintenance workflow actions
Migrate, Live Migrate

_images/notification-time.png
Number of launched VMs per test run

sample

Inspector: Sample

o 2 B s s 0 2
Notification time (seconds)

m shortcut singlethread shortcut multithread W conservative singlethread W conservative multithread

_images/Maintenance-workflow.png
Project specific
—

. r maintenance
Admin specific ot
session for

compute
App manager Inspector hosts Admin tool
—
When MAINTENANCE
maintenance Time to start
startsand ACK_MAINTENANCE
which VMs workflow
DOWN_SCALE -
Optional: If no
Down scale
empty host:
- - down scale
Reply admin PREPARE_MAINTENANCE and arrange VMs
action to to have empty
move VM ACK_PREPARE_MAINTENANCE §
Disable nova-
_ ADMIN_ACTION_DONE computes
Switch over, PLANNED_MAINTENANCE Optional: if VMs
‘own action, -~ on host
reply admin ACK_PLANNED_MAINTENANCE Optional: if
action ADMIN_ACTION_DONE i e
Repeated || Disable host automatic| IN_MAINTENANCE VMs
foreach || fault management
compute || oot automatic Actual host maintenance done here
7] fault management MAINTENANCE_COMPLETE e
/] - compute.
MAINTENANCE_COMPLETE
Up scale
ACK_MAINTENANCE_COMPLETE
MAINTENANCE |COMPLETE

_images/shortcut-notification.png
Application

0. SetAlarm

3
'
'
'
'
o
@
[]

P

Virtualized Infrastructure
(Resource Pool)

2.3. Event alan

<

Conf.

2.1. Find
Affected

B EEE— : H
1. Raw Failure %

_images/figure9.png
Administrator

3. StateChangeRequest

NFVI VIM Northbound I/F Consumer

| ! |

: = S S S S [—
| I

|

: : I 1. SubscribeRequest I 8 Z

| I (SubscribefFilter) S

| | | B

| I | 2. SubscribeResponse - o —

| I | (VirtualResourcelnfo) | L

|

: L—— 1" """""""” "> "> ">‘7> >"7"V/7V0'77'7 00— = T

|

|

|

|

|

|

4. Switch resources to
,maintenance” state

(PhysicalResourcelD; State="Maintenance")

5. Find affected
virtual resources

|
|
!
|
|
|
|
: A
! 3
| —
| I r— r _ QO
| I I 6. MaintenanceNotification I I z = | -
| . o L -
! | | (VirtualResourcelnfo) I | = 5 | o
| = o+ 2
| I I I | a o | o
| | | | I 23 | »
o 3 | >
: I I I | S 9 I -
| R R e I e O
| r | | =
| I I I
| <
| I I Q
: | 7. Switch to | 8
| | SBY | ®
| | I 3
| [' I g
: 8a. Maintenance action(s) | -
: (e.g. Migrate/Update/Terminate VirtualContainer) I
| (out of scope of Doctor project) |
| |
8b. Empty physical resources : :
| I |
| | 9. StateChangeResponse | |
: | (PhysicalResourcelnfo) | |
| I I |
: I I |
10. Maintenance work/operations
(out of scope of Doctor project)
: I I |
| s s |
| 1 1 |
: r—— 44— - - —_ e — — — b—_———— -]
I I I
l |
: : I a. StateQueryRequest I I |
| | | (StateQueryFilter) | | 8 =
I I I I I (D ,Q_').. I
: | | b. StateQueryResponse | - < @ |
: | | I I |
| | I I
|
|

(PhysicalResourcelnfo)

_images/Fault-management-design.png
Fault Management Design

Application <— _____

5. Notify Error
1

0. Subscribe Alarm
6. Action y
4. Notify all
b
k- —@ - -

PESGIUIEE eilometer

Virtualized Infrastructure Map /Aodh
(Resource Pool) @ 4. Notn‘y all
3. Update State

2. Find Aﬁected
Fanure
<o Pohcy
@ 1. Raw Failure

Nd(J

by

_images/maintenance-workflow.png
Project specific
—

. r maintenance
Admin specific ot
session for

compute
App manager Inspector hosts Admin tool
—
When MAINTENANCE
maintenance Time to start
startsand ACK_MAINTENANCE
which VMs workflow
DOWN_SCALE -
Optional: If no
Down scale
empty host:
- - down scale
Reply admin PREPARE_MAINTENANCE and arrange VMs
action to to have empty
move VM ACK_PREPARE_MAINTENANCE §
Disable nova-
_ ADMIN_ACTION_DONE computes
Switch over, PLANNED_MAINTENANCE Optional: if VMs
‘own action, -~ on host
reply admin ACK_PLANNED_MAINTENANCE Optional: if
action ADMIN_ACTION_DONE i e
Repeated || Disable host automatic| IN_MAINTENANCE VMs
foreach || fault management
compute || oot automatic Actual host maintenance done here
7] fault management MAINTENANCE_COMPLETE e
/] - compute.
MAINTENANCE_COMPLETE
Up scale
ACK_MAINTENANCE_COMPLETE
MAINTENANCE |COMPLETE

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

