

Dovetail

	1. OPNFV Verification Program Application Form

	2. OVP Workflow

	3. OVP Testing User Guide per Installer

	4. Disabling Strict API Validation in Tempest

	5. Guidelines Addendum for 2019.12 release

	6. OVP Reviewer Guide

	7. OVP NFVI System Preparation Guide

	8. OVP Test Specifications

	9. OVP Testing User Guide

	10. OVP Test Case Requirements

	11. Dovetail as a Generic Test Framework

	12. OPNFV Verification Program (OVP) 2019.12 / Dovetail 3.0.0 Release Note

1. OPNFV Verification Program Application Form

	Field

	Description

	Organization name

	Organization name

	

	

	Organization website

	Organization website if it is public

	

	

	Product name and/or identifier

	Product name and/or identifier

	

	

	Product specifications

	A link of product specifications

	

	

	Product public documentation

	A link of product public documentation

	

	

	Product categories

	Choose one: (i) software and hardware (ii) software and third party hardware

	Primary contact name

	Name

	

	Primary business email

	Only the Business email address should be used for official communication with OPNFV OVP

	

	

	Primary postal address

	Address

	

	Primary phone number

	Phone Number

	

	User ID for OVP web portal

	Choose one: (i) Linux Foundation (ii) Openstack (iii) Github (iv) Google (v) Facebook ID

	

	User ID:

	

	Location

	Choose one: (i)internal vendor lab (ii) third-party lab

	

	Name and address:

	

	

	Information of the 3rd-party lab

	If the test is to be conducted by a third-party lab, including name, email, address and
phone number

	

	

	

	

	

2. OVP Workflow

2.1. Introduction

This document provides guidance for prospective participants on how to
obtain “OPNFV Verified” for products and services. The OPNFV
Verification Program (OVP) is administered by the LF Networking
Compliance and Verification (C&V) Committee.

For further information about the workflow and general inquiries about
the program, please check out the OVP landing page [https://www.lfnetworking.org/ovp/], or contact the
C&V committee by email address ovp-support@lfnetworking.org. This email address
should be used for all communication with the OVP.

2.2. Step 1: Participation Form Submission

A participant should start the process by submitting an online
participation form. The participation form can be found on the OVP
landing page [https://www.lfnetworking.org/ovp/]. Submitters are asked for the following information:

	Organization name

	Contact name

	Contact address

	Contact telephone

	Contact email

	Membership status in LF Networking

	Qualifying Offerings Information

	Testing Category

	Product Category

	User ID

	Version of Testing Tools

	Testing Date

	Testing Location

	Third-party lab information (if any)

	Signature

Once the participation form information is received and in order, an
email response will be sent to the primary contact with confirmation and
information to proceed. The primary contact specified in the
participation form will be entered into the corresponding OVP web portal
back-end by the program administrator and will be permitted to submit
results for review on behalf of their organization. The OVP NFVI Portal
can be found here (https://nfvi-verified.lfnetworking.org) and the OVP
VNF Portal can be found here (https://vnf-verified.lfnetworking.org).

There is no fee at this time for participation in the OVP for LF
Networking (LFN) members or non-profit organizations. If not a member of
LFN, please contact LF Networking [https://www.lfnetworking.org/membership/join/] for participation fee information.

2.3. Step 2: Testing

2.3.1. NFVI Testing

The following documents guide testers to prepare the NFVI test environment and run tests:

	OVP NFVI System Preparation Guide

	OVP Test Specifications

	OVP Testing User Guide

A unique Test ID is generated by the Dovetail tool for each test run and can only be
submitted to the OVP web portal once.

2.3.2. VNF Testing

The following document guide testers to prepare the environment and run the VNF tests:

	Deploy ONAP via OOM [https://logs.onap.org/production/vex-yul-ecomp-jenkins-1/doc-elalto-verify-rtd/214/html/submodules/oom.git/docs/oom_quickstart_guide.html]

	ONAP VNF Test Specifications [https://docs.onap.org/en/elalto/submodules/vnfrqts/testcases.git/docs/index.html]

	Conducting ONAP VNF Testing for OVP

2.4. Step 3: Submitting Test Results

Users/testers other than the primary contact may use the OVP web portal as a resource to upload,
evaluate and share results in a private manner. Testers can upload the test results to the
OVP web portal (either NFVI or VNF). By default, the results are visible only to the tester who uploaded the data.

Testers can self-review the test results through the portal until they are ready to ask
for OVP review. They may also add new test results as needed.

Once the tester is satisfied with the test result, the primary contact grants access to the test
result for OVP review using a ‘submit for review’ operation via the portal. During this step,
a new window may be appeared to ask primary contact to complete the application form online.
Then the test result is identified by the unique Test ID and becomes visible to a review group
comprised of OPNFV community members.

When a test result is made visible to the reviewers, the program administrator will ask for
volunteers from the review group using the ovp-support@lfnetworking.org email and CC the primary contact
email that a review request has been made. The program administrator will supply the Test ID
and owner field (primary contact user ID) to the reviewers to identify the results.

2.5. Step 4: OVP Review

Upon receiving the email request from the program administrator, the review group conducts a
peer based review of the test result using reviewer guidelines published per OVP release.
Persons employed by the same organization that submitted the test results or by affiliated
organizations will not be part of the reviewers.

The primary contact may be asked via email for any missing information or clarification of the
test results. The reviewers will make a determination and recommend compliance or non-compliance
to the C&V Committee. A positive review requires a minimum of two approvals from two distinct
organizations without any negative reviews. The program administrator sends an email to OVP/C&V
emails announcing a positive review. A one week limit is given for issues to be raised. If no
issue is raised, the C&V Committee approves the result and the program administrator sends an
email to OVP/C&V emails stating the result is approved.

Normally, the outcome of the review should be communicated to the primary contact within 10
business days after all required information is in order.

If a test result is denied, an appeal can be made to the C&V Committee for arbitration.

2.6. Step 5: Grant of Use of Program Marks

If an application is approved, further information will be communicated to the primary contact
that includes badges and on the guidelines of using OVP Program Marks for marketing and promotional purposes.

3. OVP Testing User Guide per Installer

	3.1. Conducting OVP Testing with Dovetail using APEX installer
	3.1.1. Overview

	3.1.2. Installing Dovetail

	3.1.3. Starting Dovetail Docker

	3.1.4. Running the OVP Test Suite

	3.1.5. OVP Portal Web Interface

	3.1.6. Updating Dovetail or a Test Suite

3.1. Conducting OVP Testing with Dovetail using APEX installer

3.1.1. Overview

The purpose of this document is to give tips for the dovetail deployment
on APEX installer.
The general structure of the document is remaining according to the user guide
document and the APEX related tips will be added under of the respective
chapter’s name.

3.1.2. Installing Dovetail

3.1.2.1. Checking the Test Host Readiness

3.1.2.2. Installing Prerequisite Packages on the Test Host

3.1.2.3. Configuring the Test Host Environment

In order to run the test scenarios properly and having access to all OS components
that each scenario needs, the undercloud credentials should be used and copied in the
docker container along with ssh key.

The environment preparation should be applied on the Test Host environment.
Therefore, the containers which are going to be used as part of this configuration,
fetch the information, the files and the rest input from Test Host environment directly
as part of the Docker command.

3.1.2.4. Setting up Primary Configuration File

Two new environment variables could be introduced in the env_config.sh file.

Set the name of the installer type as environment variable (e.g. apex, fuel, etc)
Optional parameter
export INSTALLER_TYPE=xxxx

Set the deployed scenario name (e.g. os-sdn-nofeature-noha)
Optional parameter
export DEPLOY_SCENARIO=xxxx

For the OS_PASSWORD, OpenStack password from undercloud environment should be used.

3.1.2.5. Configuration for Running Tempest Test Cases (Mandatory)

3.1.2.6. Configuration for Running HA Test Cases (Mandatory)

Below is a sample of ${DOVETAIL_HOME}/pre_config/pod.yaml file with
the required syntax when key_filename is used instead of password is employed
by the controller.
Moreover, the ‘heat-admin’ should be used as user.

nodes:
-
 # This can not be changed and must be node0.
 name: node0

 # This must be Jumpserver.
 role: Jumpserver

 # This is the instance IP of a node which has ipmitool installed.
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: heat-admin

 # Password of the user.
 #password: root
 key_filename: /root/.ssh/id_rsa

-
 # This can not be changed and must be node1.
 name: node1

 # This must be controller.
 role: Controller

 # This is the instance IP of a controller node, which is the haproxy primary node
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: heat-admin

 # Password of the user.
 #password: root
 key_filename: /root/.ssh/id_rsa

process_info:
-
 # The default attack process of yardstick.ha.rabbitmq is 'rabbitmq-server'.
 # Here can be reset to 'rabbitmq'.
 testcase_name: yardstick.ha.rabbitmq
 attack_process: rabbitmq

-
 # The default attack host for all HA test cases is 'node1'.
 # Here can be reset to any other node given in the section 'nodes'.
 testcase_name: yardstick.ha.glance_api
 attack_host: node2

3.1.2.7. Configuration of Hosts File (Optional)

3.1.2.8. Installing Dovetail on the Test Host

3.1.2.8.1. Online Test Host

3.1.2.8.2. Offline Test Host

3.1.3. Starting Dovetail Docker

3.1.4. Running the OVP Test Suite

3.1.4.1. Making Sense of OVP Test Results

3.1.5. OVP Portal Web Interface

3.1.6. Updating Dovetail or a Test Suite

4. Disabling Strict API Validation in Tempest

4.1. Introduction

In 2015, the OpenStack QA team introduced a validation mechanism for Nova API
responses in Tempest 1 with the goal of enforcing Nova API micro-versions.
The API validation mechanism verifies that API responses only contain data
elements (properties) as explicitly defined in API response schemas 2. In
case additional data elements are found in Nova API responses, the
corresponding tests fail immediately without asserting whether or not the
particular API operation actually succeeded or not.

Independently, cloud vendors have extended their commercial OpenStack cloud
implementations with additional functionality which requires API extensions.
Consequently, such cloud implementations do not pass Tempest tests which
validate API responses despite actually implementing and providing the tested
functionality.

This document describes an exemption process for use within the OPNFV Verification
Program which

	allows vendors to pass Tempest tests if the tested functionality is
fully supported despite the presence of additional data elements in API
responses, and

	makes the application of the exemption process transparently visible in
test results.

4.2. Background and benefits for OVP

Vendors of commercial NFV products have extended OpenStack to provide
additional (NFV) functionality to their customers and to fill functional gaps
in OpenStack. These add-ons potentially extend the OpenStack API in two ways:

	new API endpoints and

	additional attributes returned by existing API endpoints.

New API endpoints typically go unnoticed by OpenStack Tempest tests and hence
do not interfere with existing tests. In contrast, (Nova) Tempest tests
actively validate the responses returned by existing API endpoints against
pre-defined schemas. An API response is considered invalid if additional
attributes are present (see example below). Hence, this particular type of
functional extension of OpenStack causes existing Tempest tests to fail,
irrespective of whether or not the functionality which is supposed to be tested
is actually available. As a result, a Tempest test failing due to extended API
responses does not provide information about whether the tested functionality
is available or not.

The OPNFV Verification Program has inherited the policy to strictly validate API
responses from OpenStack by including a selection of Tempest tests in its
compliance test suite. However, it was never discussed if OVP should adopt this
policy as well. It turns out that this policy causes challenges for vendors of
commercial NFV offerings to pass the OVP test suite. The exemption process
outlined in this document aims at allowing to selectively disable strict API
response validation in order to enable vendors to adopt OVP if the tested
functionality is supported.

It must be clearly understood that this exemption targets only the scenario
in which additional attributes are included in API responses. It does not
provide a loophole for passing OVP tests if the OpenStack APIs have been
altered significantly as this is in conflict with the objective of OVP to
create industry alignment.

In conclusion, the exemption process described here is deemed beneficial for
both the broader industry as well as for OVP: Enabling adoption of OVP by
vendors which extended OpenStack API responses facilitates adoption of OVP in
the industry. The limited validity period of an exemption incentivizes eventual
alignment within the industry around a clearly specified set of APIs.

4.2.1. Example: additional attributes per VM for HA policy

This fictional example showcases the presence of an additional attribute in an
API response. The example shows that the ‘server details’ 3, i.e. the VM
metadata, includes an additional attribute ‘ha-policy’ which is used to
associate high-availability policies with a VM instance. This attribute is
utilized by a proprietary add-on component to manage VM migration and recovery
in case of compute host failures:

{
 "server": {
 "accessIPv4": "1.2.3.4",
 "config_drive": "",
 "flavor": {...},
 "image": {...},
 "ha_policy": "migrate" <-- additional attribute
 "name": "new-server-test",
 "status": "ACTIVE"
 }
}

4.3. Precedent in OpenStack

In the OpenStack community, the OpenStack Interoperability Working Group
(Interop WG) 4 is maintaining multiple API interoperability compliance
programs 5. These programs utilize Tempest-based tests to determine if a
given commercial cloud is compliant to a selected set of OpenStack APIs. After
introduction of the strict API response validation, various cloud products
which previously passed the compliance program failed validation because of the
reasons outlined above.

In order to mitigate this situation, the Interop WG consulted with the broader
OpenStack community 6 and eventually introduced an “additional properties
waiver” for its API compliance programs in July 2016. The waiver was
created with a clearly defined validity period, covering roughly one year -
equivalent to three iterations of interoperability guidelines (2015.07,
2016.01, and 2016.08). The limited lifetime of the waiver was intended to give
cloud product vendors a transition period for adapting their products to
achieve full API compliance by the end of the exemption period. All details of
the waiver are listed in 7. Finally, the waiver was officially canceled in
October 2017 8 after about 15 months.

4.4. Exemption process for additional properties in API responses in the OVP

The details of the exemption process for disabling strict validation of API
responses is as follows:

	The Dovetail tool provides a new command line option “–no-api-validation” for
disabling strict API validation. This option needs to be explicitly given on
the command line to disable strict API validation. If this command line
option is omitted, the default behavior (i.e., strict API validation) is
applied.

	The test results created by the Dovetail tool includes an explicit print-out
stating if strict API validation was disabled during the test run or not.

	The OVP portal reads the uploaded result files and indicates for all
uploaded test results if strict API validation was disabled or not.

	Together with the application for certification, a company can request an
exemption from the requirement for strict API response checking. A rationale
for requesting the exemption has to be provided. The request is either
granted or rejected by the C&C committee. The rationale provided must
establish that the need for exemption is not in violation of the OVP’s
objectives.

	Compliance badges obtained under exemption are valid for one year.

	OPNFV expects OVP participants to aim for full compliance without requiring
exemptions as soon as possible. Hence, an exemption can only be requested
twice for the same product (addressing new versions of OVP or new versions
of the product).

	The same logo will be used regardless of being obtained under exemption or
not.

	The exemption will be made available to participants of OVP as part of a
service release of OVP 2018.01, 2018.09 and 2019.12.

	The C&C committee will monitor the situation around exemptions and may
decide changes to the above process at any time, including the possibility
to stop issuing exemptions.

	1

	https://review.opendev.org/gitweb?p=openstack%2Ftempest.git;a=commitdiff;h=f0c30bc241e5160e3fe7402e738ea8f56a8b1315

	2

	https://github.com/openstack/tempest/tree/master/tempest/lib/api_schema/response/compute

	3

	https://docs.openstack.org/api-ref/compute/#show-server-details

	4

	https://wiki.openstack.org/wiki/Governance/InteropWG

	5

	https://www.openstack.org/brand/interop/

	6

	http://lists.openstack.org/pipermail/openstack-dev/2016-June/097349.html

	7

	https://review.opendev.org/gitweb?p=openstack%2Finterop.git;a=commitdiff;h=c38e18b343505f16a74a97b748362fa7f1a01e57

	8

	https://review.opendev.org/gitweb?p=openstack%2Finterop.git;a=commitdiff;h=5748c296a658cf5efebc16ad9d7644ca1125b073

5. Guidelines Addendum for 2019.12 release

5.1. Introduction

This addendum provides a high-level description of the testing scope and
pass/fail criteria used in the OPNFV Verification Program (OVP) for the 2019.12
release. This information is intended as an overview for OVP testers and for
the Dovetail Project to help guide test-tool and test-case development for the
OVP 2019.12 release. The Dovetail project is responsible for documenting
test-case specifications as well as implementing the OVP tool-chain through
collaboration with the OPNFV and ONAP testing communities. OVP testing focuses on
establishing the ability of the System Under Test (SUT) to perform NFVI and VIM
operations and support Service Provider oriented features that ensure
manageable, resilient and secure networks.

5.2. Meaning of Compliance

OPNFV Compliance indicates adherence of an NFV platform and VNF to behaviors
defined through specific platform capabilities, allowing to prepare, instantiate,
operate and remove VNFs running on the NFVI. OVP 2019.12 compliance evaluates
the ability of a platform to support Service Provider network capabilities and
workloads that are supported in the OPNFV and ONAP platforms as of this release.
Test cases are designated as compulsory or optional based on the maturity
of capabilities as well as industry expectations. Compulsory test cases may for
example include NFVI management capabilities whereas tests for certain
high-availability features may be deemed as optional.

Test coverage and pass/fail criteria are designed to ensure an acceptable level
of compliance but not be so restrictive as to disqualify variations in platform
implementations, capabilities and features.

5.3. SUT Assumptions

Assumptions about the NFVI System Under Test (SUT) for the OVP Infrastructure
badge include …

	The minimal specification of physical infrastructure, including controller
nodes, compute nodes and networks, is defined for the NFVI by the
Pharos specification [https://wiki.opnfv.org/display/pharos/Pharos+Specification].

	The SUT is fully deployed and operational, i.e. SUT deployment tools are
out of scope of testing.

Assumptions about the VNF System Under Test (SUT) for the OVP VNF
badge include …

	The VNF templates and disk image(s) file are available, and the disk image(s)
have been deployed to the ONAP Cloud Site.

	The required value for the VNF pre-load files are available for the selected
ONAP Cloud Site.

5.4. Scope of Testing

The OVP Governance Guidelines [https://www.opnfv.org/wp-content/uploads/sites/12/2018/01/OVP-Governance-Guidelines-1.0.1-012218.pdf], as approved by the Board of Directors,
outlines the key objectives of the OVP as follows:

	Help build the market for

	LFN based infrastructure

	applications designed to run on that infrastructure

	Reduce adoption risks for end-users

	Decrease testing costs by verifying hardware and software platform
interfaces and components

	Enhance interoperability

The guidelines further directs the scope to be constrained to “features,
capabilities, components, and interfaces included in an OPNFV and ONAP releases
that are generally available in the industry (e.g., through adoption by an upstream
community)”, and that compliance verification is evaluated using “functional
tests that focus on defined interfaces and/or behaviors without regard to the
implementation of the underlying system under test”.

OPNFV provides a broad range of capabilities, including the reference platform
itself as well as tools-chains and methodologies for building infrastructures,
and deploying and testing the platform. Not all these aspects are in scope for
OVP and not all functions and components are tested in the initial versions of
OVP. For example, the deployment tools for the SUT and CI/CD toolchain are
currently out of scope. Similarly, performance benchmarking related testing is
also out of scope or for further study. Newer functional areas such as MANO
(outside of APIs in the NFVI and VIM) are still developing and are for future
considerations.

ONAP provides a comprehensive platform for real-time, policy-driven orchestration
and automation of physical and virtual network functions that will enable software,
network, IT and cloud providers and developers to rapidly automate new services and
support complete lifecycle management. By unifying member resources, ONAP is
accelerating the development of a vibrant ecosystem around a globally shared
architecture and implementation for network automation–with an open standards focus–
faster than any one product could on its own.

5.4.1. General Approach

In order to meet the above objectives for OVP, we aim to follow a general
approach by first identifying the overall requirements for all stake-holders,
then analyzing what OPNFV and the upstream communities can effectively test and
verify presently to derive an initial working scope for OVP, and to recommend
what the community should strive to achieve in future releases.

The overall requirements for OVP can be categorized by the basic cloud
capabilities representing common operations needed by basic VNFs, and
additional requirements for VNFs that go beyond the common cloud capabilities
including functional extensions, operational capabilities and additional
carrier grade requirements.

For the basic NFV requirements, we will analyze the required test cases,
leverage or improve upon existing test cases in OPNFV projects and upstream
projects whenever we can, and bridge the gaps when we must, to meet these basic
requirements.

We are not yet ready to include compliance requirements for capabilities such
as hardware portability, carrier grade performance, fault management and other
operational features, security, MANO and VNF verification. These areas are
being studied for consideration in future OVP releases.

In some areas, we will start with a limited level of verification initially,
constrained by what community resources are able to support at this time, but
still serve a basic need that is not being fulfilled elsewhere. In these
areas, we bring significant value to the community we serve by starting a new
area of verification, breaking new ground and expanding it in the future.

In other areas, the functions being verified have yet to reach wide adoption
but are seen as important requirements in NFV, or features are only needed for
specific NFV use cases but an industry consensus about the APIs and behaviors
is still deemed beneficial. In such cases, we plan to incorporate the test
areas as optional. An optional test area will not have to be run or passed in
order to achieve compliance. Optional tests provide an opportunity for vendors
to demonstrate compliance with specific OPNFV features beyond the mandatory
test scope.

5.4.2. Analysis of Scope

In order to define the scope of the 2019.12 release of the compliance and
verification program, this section analyzes NFV-focused platform capabilities
with respect to the high-level objectives and the general approach outlined in
the previous section. The analysis determines which capabilities are suitable
for inclusion in this release of the OVP and which capabilities are to be
addressed in future releases.

	Basic Cloud Capabilities

The intent of these tests is to verify that the SUT has the required
capabilities that a basic VNF needs, and these capabilities are implemented in
a way that enables this basic VNF to run on any OPNFV compliant deployment.

A basic VNF can be thought of as a single virtual machine that is networked and
can perform the simplest network functions, for example, a simple forwarding
gateway, or a set of such virtual machines connected only by simple virtual
network services. Running such basic VNF leads to a set of common requirements,
including:

	image management (testing Glance API)

	identity management (testing Keystone Identity API)

	virtual compute (testing Nova Compute API)

	virtual storage (testing Cinder API)

	virtual networks (testing Neutron Network API)

	forwarding packets through virtual networks in data path

	filtering packets based on security rules and port security in data path

	dynamic network runtime operations through the life of a VNF (e.g. attach/detach,
enable/disable, read stats)

	correct behavior after common virtual machine life cycles events (e.g.
suspend/resume, reboot, migrate)

	simple virtual machine resource scheduling on multiple nodes

OPNFV mainly supports OpenStack as the VIM up to the 2019.12 release. The VNFs
used in the OVP NFVI program, and features in scope for the program which are
considered to be basic to all VNFs, require commercial OpenStack distributions
to support a common basic level of cloud capabilities, and to be compliant to a
common specification for these capabilities. This requirement significantly
overlaps with OpenStack community’s Interop working group’s goals, but they are
not identical. The OVP runs the OpenStack Refstack-Compute test cases to verify
compliance to the basic common API requirements of cloud management functions
and VNF (as a VM) management for OPNFV. Additional NFV specific requirements
are added in network data path validation, packet filtering by security group
rules and port security, life cycle runtime events of virtual networks,
multiple networks in a topology, validation of VNF’s functional state after
common life-cycle events including reboot, pause, suspense, stop/start and cold
migration. In addition, the basic requirement also verifies that the SUT can
allocate VNF resources based on simple anti-affinity rules.

The combined test cases help to ensure that these basic operations are always
supported by a compliant platform and they adhere to a common standard to
enable portability across OPNFV compliant platforms.

	NFV specific functional requirements

NFV has functional requirements beyond the basic common cloud capabilities,
esp. in the networking area. Examples like BGPVPN, IPv6, SFC may be considered
additional NFV requirements beyond general purpose cloud computing. These
feature requirements expand beyond common OpenStack (or other VIM)
requirements. OPNFV OVP will incorporate test cases to verify compliance in
these areas as they become mature. Because these extensions may impose new API
demands, maturity and industry adoption is a prerequisite for making them a
mandatory requirement for OPNFV compliance. At the time of the 2019.12 release,
we have promoted tests of the OpenStack IPv6 API from optional to mandatory
while keeping BGPVPN as optional test area. Passing optional tests will not be
required to pass OPNFV compliance verification.

BGPVPNs are relevant due to the wide adoption of MPLS/BGP based VPNs in wide
area networks, which makes it necessary for data centers hosting VNFs to be
able to seamlessly interconnect with such networks. SFC is also an important
NFV requirement, however its implementation has not yet been accepted or
adopted in the upstream at the time of the 2019.12 release.

	High availability

High availability is a common carrier grade requirement. Availability of a
platform involves many aspects of the SUT, for example hardware or lower layer
system failures or system overloads, and is also highly dependent on
configurations. The current OPNFV high availability verification focuses on
OpenStack control service failures and resource overloads, and verifies service
continuity when the system encounters such failures or resource overloads, and
also verifies the system heals after a failure episode within a reasonable time
window. These service HA capabilities are commonly adopted in the industry and
should be a mandatory requirement.

The current test cases in HA cover the basic area of failure and resource
overload conditions for a cloud platform’s service availability, including all
of the basic cloud capability services, and basic compute and storage loads, so
it is a meaningful first step for OVP. We expect additional high availability
scenarios be extended in future releases.

	Stress Testing

Resiliency testing involves stressing the SUT and verifying its ability to
absorb stress conditions and still provide an acceptable level of service.
Resiliency is an important requirement for end-users.

The 2019.12 release of OVP includes a load test which spins up a number of VMs
pairs in parallel to assert that the system under test can process the workload
spike in a stable and deterministic fashion.

	Security

Security is among the top priorities as a carrier grade requirement by the
end-users. Some of the basic common functions, including virtual network
isolation, security groups, port security and role based access control are
already covered as part of the basic cloud capabilities that are verified in
OVP. These test cases however do not yet cover the basic required security
capabilities expected of an end-user deployment. It is an area that we should
address in the near future, to define a common set of requirements and develop
test cases for verifying those requirements.

The 2019.12 release includes new test cases which verify that the role-based
access control (RBAC) functionality of the VIM is behaving as expected.

Another common requirement is security vulnerability scanning. While the OPNFV
security project integrated tools for security vulnerability scanning, this has
not been fully analyzed or exercised in 2019.12 release. This area needs
further work to identify the required level of security for the purpose of
OPNFV in order to be integrated into the OVP. End-user inputs on specific
requirements in security is needed.

	Service assurance

Service assurance (SA) is a broad area of concern for reliability of the
NFVI/VIM and VNFs, and depends upon multiple subsystems of an NFV platform for
essential information and control mechanisms. These subsystems include
telemetry, fault management (e.g. alarms), performance management, audits, and
control mechanisms such as security and configuration policies.

The current 2019.12 release implements some enabling capabilities in NFVI/VIM
such as telemetry, policy, and fault management. However, the specification of
expected system components, behavior and the test cases to verify them have not
yet been adequately developed. We will therefore not be testing this area at
this time but defer to future study.

	Use case testing

Use-case test cases exercise multiple functional capabilities of a platform in
order to realize a larger end-to-end scenario. Such end-to-end use cases do
not necessarily add new API requirements to the SUT per se, but exercise
aspects of the SUT’s functional capabilities in more complex ways. For
instance, they allow for verifying the complex interactions among multiple VNFs
and between VNFs and the cloud platform in a more realistic fashion. End-users
consider use-case-level testing as a significant tool in verifying OPNFV
compliance because it validates design patterns and support for the types of
NFVI features that users care about.

There are a lot of projects in OPNFV developing use cases and sample VNFs. The
2019.12 release of OVP features two such use-case tests, spawning and verifying
a vIMS and a vEPC, correspondingly.

	Additional NFVI capabilities

In addition to the capabilities analyzed above, there are further system
aspects which are of importance for the OVP. These comprise operational and
management aspects such as platform in-place upgrades and platform operational
insights such as telemetry and logging. Further aspects include API backward
compatibility / micro-versioning, workload migration, multi-site federation and
interoperability with workload automation platforms, e.g. ONAP. Finally,
efficiency aspects such as the hardware and energy footprint of the platform
are worth considering in the OVP.

OPNFV is addressing these items on different levels of details in different
projects. However, the contributions developed in these projects are not yet
considered widely available in commercial systems in order to include them in
the OVP. Hence, these aspects are left for inclusion in future releases of the
OVP.

	VNF Compliance

VNF Compliance verifies the VNF template files conform to the requirements documented
in by ONAP VNFRQTS project.

	VNF Validation

VNF Validation verifies the VNF is able to onbroad within ONAP and ONAP is able to
perform basic orchestration operations with the VNF, including instantiating the
VNF on the Cloud Site.

5.4.3. Scope of the 2019.12 release of the OVP

Summarizing the results of the analysis above, the scope of the 2019.12 release
of OVP is as follows:

	Mandatory NFVI test scope:

	functest.vping.userdata

	functest.vping.ssh

	functest.tempest.osinterop*

	functest.tempest.compute

	functest.tempest.identity_v3

	functest.tempest.image

	functest.tempest.network_api

	functest.tempest.volume

	functest.tempest.neutron_trunk_ports

	functest.tempest.ipv6_api

	functest.security.patrole

	yardstick.ha.nova_api

	yardstick.ha.neutron_server

	yardstick.ha.keystone

	yardstick.ha.glance_api

	yardstick.ha.cinder_api

	yardstick.ha.cpu_load

	yardstick.ha.disk_load

	yardstick.ha.haproxy

	yardstick.ha.rabbitmq

	yardstick.ha.database

	bottlenecks.stress.ping

	Optional NFVI test scope:

	functest.tempest.ipv6_scenario

	functest.tempest.multi_node_scheduling

	functest.tempest.network_security

	functest.tempest.vm_lifecycle

	functest.tempest.network_scenario

	functest.tempest.bgpvpn

	yardstick.ha.neutron_l3_agent

	yardstick.ha.controller_restart

	functest.vnf.vims

	functest.vnf.vepc

	Mandatory VNF test scope:

	Refer to ONAP VNF Test Case Descriptions [https://docs.onap.org/en/elalto/submodules/vnfrqts/testcases.git/docs/index.html]

* The OPNFV OVP utilizes the same set of test cases as the OpenStack
interoperability program OpenStack Powered Compute. Passing the OPNFV OVP
does not imply that the SUT is certified according to the OpenStack
Powered Compute program. OpenStack Powered Compute is a trademark of the
OpenStack foundation and the corresponding certification label can only be
awarded by the OpenStack foundation.

Note: The SUT is limited to NFVI and VIM functions. While testing MANO
component capabilities is out of scope, certain APIs exposed towards MANO are
used by the current OPNFV compliance testing suite. MANO and other operational
elements may be part of the test infrastructure; for example used for workload
deployment and provisioning.

5.4.4. Scope considerations for future OVP releases

Based on the previous analysis, the following items are outside the scope of
the 2019.12 release of OVP but are being considered for inclusion in future
releases:

	service assurance

	use case testing

	platform in-place upgrade

	API backward compatibility / micro-versioning

	workload migration

	multi-site federation

	service function chaining

	platform operational insights, e.g. telemetry, logging

	efficiency, e.g. hardware and energy footprint of the platform

	interoperability with workload automation platforms e.g. ONAP

	resilience

	security and vulnerability scanning

	performance measurements

5.5. Criteria for Awarding Compliance

This section provides guidance on compliance criteria for each test area. The
criteria described here are high-level, detailed pass/fail metrics are
documented in Dovetail test specifications.

	All mandatory test cases must pass.

Exceptions to this rule may be legitimate, e.g. due to imperfect test tools or
reasonable circumstances that we can not foresee. These exceptions must be
documented and accepted by the reviewers.

	Optional test cases are optional to run. Its test results, pass or fail,
do not impact compliance.

Applicants who choose to run the optional test cases can include the results
of the optional test cases to highlight the additional compliance.

5.6. Exemption from strict API response validation

Vendors of commercial NFVI products may have extended the Nova API to support
proprietary add-on features. These additions can cause Nova Tempest API tests
to fail due to unexpected data in API responses. In order to resolve this
transparently in the context of OVP, a temporary exemption process has been
created. More information on the exemption can be found in section
Disabling Strict API Validation in Tempest.

6. OVP Reviewer Guide

6.1. Introduction

This document provides detailed guidance for reviewers on how to handle the result review
process.

The OPNFV Verification Program (OVP) provides the ability for users to upload test results in
OVP portal [https://nfvi-verified.lfnetworking.org] and request from OVP community to review them.

OVP administrator will ask for review volunteers using the ovp-support@lfnetworking.org email alias.
The incoming results for review will be identified by the administrator with particular Test ID
and Owner values.

Volunteers that will accept the review request can access the test results by login to the
OVP portal [https://nfvi-verified.lfnetworking.org] and then click on the Incoming Reviews
tab in top-level navigation bar.

[image: ../../../_images/ovp_top_nav.png]
After the user submit for review the test results Status is changed from ‘private’ to ‘review’.
Reviewers can find that the corresponding OVP portal result will have a status of ‘review’.
Also there are Application information list here for review. All the application information
is submitted by users at the same time they submit their results for review. Reviewers can also
find who has already approve/not approve the test results by clicking on the View Reviews.

[image: ../../../_images/ovp_result_review.png]
Reviewers must follow the checklist below to ensure review consistency for the OPNFV
Verification Program (OVP) 2019.12 (Hunter) release at a minimum.

	Test Case Pass Percentage - Ensure all mandatory tests have passed (100% pass rate).

	Mandatory Test Case Results - Validate that results for all mandatory test cases are present.

	Log File Verification - Inspect the log file for each test case.

	SUT Info Verification - Validate the system under test (SUT) hardware and software endpoint info is present.

6.2. Test Case Pass Percentage

All mandatory test cases have to run successfully. The below figure of the Test Run Results
is one method and shows that 96.71% of the mandatory test cases have passed.
This value must not be lower than 100%.

[image: ../../../_images/ovp_pass_percentage.png]

6.3. Mandatory Test Case Results

Test results can be displayed by clicking on the hyperlink under the Test ID column.
Reviewers should validate that results for all mandatory test cases are included in the overall
test suite. The required mandatory test cases are:

	bottlenecks.stress.ping

	functest.security.patrole

	functest.tempest.compute

	functest.tempest.identity_v3

	functest.tempest.image

	functest.tempest.ipv6_api

	functest.tempest.network_api

	functest.tempest.neutron_trunk_ports

	functest.tempest.osinterop

	functest.tempest.volume

	functest.vping.ssh

	functest.vping.userdata

	yardstick.ha.cinder_api

	yardstick.ha.cpu_load

	yardstick.ha.database

	yardstick.ha.disk_load

	yardstick.ha.glance_api

	yardstick.ha.haproxy

	yardstick.ha.keystone

	yardstick.ha.neutron_server

	yardstick.ha.nova_api

	yardstick.ha.rabbitmq

Note, that the ‘Test ID’ column in this view condenses the UUID used for ‘Test ID’ to
eight characters even though the ‘Test ID’ is a longer UUID in the back-end.

Failed test cases can be easy identified by the color of pass/total number:

	Green when all test cases pass

	Orange when at least one fails/skips

	Red when all test cases fail/skip

[image: ../../../_images/ovp_pass_fraction.png]

6.4. Log File Verification

Each log file of the mandatory test cases have to be verified for content.

Log files can be displayed by clicking on the setup icon to the right of the results,
as shown in the figure below.

[image: ../../../_images/ovp_log_setup.png]
Note, all log files can be found at results/ directory as shown at the following table.

	Mandatory Test Case

	Location

	bottlenecks

	results/stress_logs/

	functest.vping

	results/vping_logs/

	functest.tempest

	results/tempest_logs/

	functest.security

	results/security_logs/

	yardstick

	results/ha_logs/

6.4.1. Bottlenecks Logs

It must contain the ‘SUCCESS’ result at the end of Bottlenecks log as shown in following example:

2019-12-03 07:35:14,630 [INFO] yardstick.benchmark.core.task task.py:129 Testcase: “ping_bottlenecks” SUCCESS!!!

6.4.2. Functest Logs

There are 2 different types of Functest logs, one is plain text for vping test cases and the other
is html file for tempest and security test cases.

For vping test cases, two entries displayed in the tables below must be present in log files.

functest.vping.ssh

[image: ../../../_images/ovp_vping_ssh.png]
functest.vping.userdata

[image: ../../../_images/ovp_vping_user.png]
For tempest and security test cases, it opens an html page that lists all test cases as shown
below. All test cases must have run successfully.

[image: ../../../_images/ovp_log_files_functest_image.png]

6.4.3. Yardstick Logs

The yardstick log must contain the ‘SUCCESS’ result for each of the test-cases within this
test area. This can be verified by searching the log for the keyword ‘SUCCESS’.

An example of a FAILED and a SUCCESS test case are listed below:

2018-08-28 10:25:09,946 [ERROR] yardstick.benchmark.scenarios.availability.monitor.monitor_multi monitor_multi.py:78 SLA failure: 14.015082 > 5.000000

2018-08-28 10:23:41,907 [INFO] yardstick.benchmark.core.task task.py:127 Testcase: “opnfv_yardstick_tc052” SUCCESS!!!

6.5. SUT Info Verification

SUT information must be present in the results to validate that all required endpoint services
and at least two controllers were present during test execution. For the results shown below,
click the info hyperlink in the SUT column to navigate to the SUT information page.

[image: ../../../_images/sut_info.png]
In the Endpoints listing shown below for the SUT VIM component, ensure that services are
present for identify, compute, image, volume and network at a minimum by inspecting the
Service Type column.

[image: ../../../_images/sut_endpoints.png]
Inspect the Hosts listing found below the Endpoints secion of the SUT info page and ensure
at least two hosts are present, as two controllers are required the for the mandatory HA
test cases.

6.6. Approve or Not Approve Results

When you decide to approve or not approve this test, you can click the Operation and choose
approve or not approve. Once you have approved or not approved the test, you can click
View Reviews to find the review status as shown below.

[image: ../../../_images/review_status.png]

7. OVP NFVI System Preparation Guide

This document provides a general guide to hardware system prerequisites
and expectations for running OPNFV OVP testing. For detailed guide of
preparing software tools and configurations, and conducting the test,
please refer to the User Guide :ref:dovetail-testing_user_guide.

The OVP test tools expect that the hardware of the System Under Test (SUT)
is Pharos compliant Pharos specification [https://wiki.opnfv.org/display/pharos/Pharos+Specification]

The Pharos specification itself is a general guideline, rather than a set of
specific hard requirements at this time, developed by the OPNFV community. For
the purpose of helping OVP testers, we summarize the main aspects of hardware to
consider in preparation for OVP testing.

As described by the OVP Testing User Guide, the hardware systems involved in
OVP testing includes a Test Node, a System Under Test (SUT) system, and network
connectivity between them.

The Test Node can be a bare metal machine or a virtual machine that can support
Docker container environment. If it is a bare metal machine, it needs to be a
x86 based at this time. Detailed information of how to configure and prepare the
Test Node can be found in the User Guide.

The System Under Test (SUT) system is expected to consist of a set of general
purpose servers, storage devices or systems, and networking infrastructure
connecting them together.
The set of servers are expected to be of the same architecture, either x86-64 or
ARM-64. Mixing different architectures in the same SUT is not supported.

A minimum of 5 servers, 3 configured for controllers and 2 or more configured for compute
resource are expected. However this is not a hard requirement
at this phase. The OVP 1.0 mandatory test cases only require one compute server. At
lease two compute servers are required to pass some of the optional test cases
in the current OVP release. OVP control service high availability tests expect two
or more control nodes to pass, depending on the HA mechanism implemented by the
SUT.

The SUT is also expected to include components for persistent storage. The OVP
testing does not expect or impose significant storage size or performance requirements.

The SUT is expected to be connected with high performance networks. These networks
are expected in the SUT:

	A management network by which the Test Node can reach all identity, image, network,
and compute services in the SUT

	A data network that supports the virtual network capabilities and data path testing

Additional networks, such as Light Out Management or storage networks, may be
beneficial and found in the SUT, but they are not a requirement for OVP testing.

8. OVP Test Specifications

8.1. Introduction

The OPNFV OVP provides a series or test areas aimed to evaluate the operation
of an NFV system in accordance with carrier networking needs. Each test area
contains a number of associated test cases which are described in detail in the
associated test specification.

All tests in the OVP are required to fulfill a specific set of criteria in
order that the OVP is able to provide a fair assessment of the system under
test. Test requirements are described in the :ref:dovetail-test_case_requirements
document.

All tests areas addressed in the OVP are covered in the following test
specification documents.

	8.1.1. OpenStack Services HA test specification
	8.1.1.1. Scope

	8.1.1.2. References

	8.1.1.3. Definitions and abbreviations

	8.1.1.4. System Under Test (SUT)

	8.1.1.5. Test Area Structure

	8.1.1.6. Test Descriptions

	8.1.2. Patrole Tempest Tests
	8.1.2.1. Scope

	8.1.2.2. References

	8.1.2.3. System Under Test (SUT)

	8.1.2.4. Test Area Structure

	8.1.3. Patrole Tempest Tests Depend on Vxlan
	8.1.3.1. Scope

	8.1.3.2. References

	8.1.3.3. System Under Test (SUT)

	8.1.3.4. Test Area Structure

	8.1.4. Stress Test Specification
	8.1.4.1. Scope

	8.1.4.2. References

	8.1.4.3. Definitions and Abbreviations

	8.1.4.4. System Under Test (SUT)

	8.1.4.5. Test Area Structure

	8.1.4.6. Test Descriptions

	8.1.5. Tempest Compute test specification
	8.1.5.1. Scope

	8.1.5.2. References

	8.1.5.3. System Under Test (SUT)

	8.1.5.4. Test Area Structure

	8.1.5.5. Test Area Structure

	8.1.6. Tempest Identity v3 test specification
	8.1.6.1. Scope

	8.1.6.2. References

	8.1.6.3. System Under Test (SUT)

	8.1.6.4. Test Area Structure

	8.1.7. Tempest Image test specification
	8.1.7.1. Scope

	8.1.7.2. References

	8.1.7.3. System Under Test (SUT)

	8.1.7.4. Test Area Structure

	8.1.8. IPv6 test specification
	8.1.8.1. Scope

	8.1.8.2. References

	8.1.8.3. Definitions and abbreviations

	8.1.8.4. System Under Test (SUT)

	8.1.8.5. Test Area Structure

	8.1.8.6. Test Descriptions

	8.1.9. VM Resource Scheduling on Multiple Nodes test specification
	8.1.9.1. Scope

	8.1.9.2. References

	8.1.9.3. Definitions and abbreviations

	8.1.9.4. System Under Test (SUT)

	8.1.9.5. Test Area Structure

	8.1.9.6. Test Descriptions

	8.1.10. Tempest Network API test specification
	8.1.10.1. Scope

	8.1.10.2. References

	8.1.10.3. System Under Test (SUT)

	8.1.10.4. Test Area Structure

	8.1.11. Tempest Network Scenario test specification
	8.1.11.1. Scope

	8.1.11.2. References

	8.1.11.3. Definitions and abbreviations

	8.1.11.4. System Under Test (SUT)

	8.1.11.5. Test Area Structure

	8.1.11.6. Test Descriptions

	8.1.12. Security Group and Port Security test specification
	8.1.12.1. Scope

	8.1.12.2. References

	8.1.12.3. Definitions and abbreviations

	8.1.12.4. System Under Test (SUT)

	8.1.12.5. Test Area Structure

	8.1.12.6. Test Descriptions

	8.1.13. OpenStack Interoperability Test Specification
	8.1.13.1. References

	8.1.14. Neutron Trunk Port Tempest Tests
	8.1.14.1. Scope

	8.1.14.2. References

	8.1.14.3. System Under Test (SUT)

	8.1.14.4. Test Area Structure

	8.1.15. Common virtual machine life cycle events test specification
	8.1.15.1. Scope

	8.1.15.2. References

	8.1.15.3. Definitions and abbreviations

	8.1.15.4. System Under Test (SUT)

	8.1.15.5. Test Area Structure

	8.1.15.6. Test Descriptions

	8.1.16. Tempest Volume test specification
	8.1.16.1. Scope

	8.1.16.2. References

	8.1.16.3. System Under Test (SUT)

	8.1.16.4. Test Area Structure

	8.1.17. VNF test specification
	8.1.17.1. Scope

	8.1.17.2. References

	8.1.17.3. Definitions and abbreviations

	8.1.17.4. System Under Test (SUT)

	8.1.17.5. Test Area Structure

	8.1.17.6. Test Descriptions

	8.1.18. Vping Test Specification
	8.1.18.1. Scope

	8.1.18.2. References

	8.1.18.3. Definitions and Abbreviations

	8.1.18.4. System Under Test (SUT)

	8.1.18.5. Test Area Structure

	8.1.18.6. Test Descriptions

	8.1.19. VPN test specification
	8.1.19.1. Scope

	8.1.19.2. References

	8.1.19.3. Definitions and abbreviations

	8.1.19.4. System Under Test (SUT)

	8.1.19.5. Test Area Structure

	8.1.19.6. Test Descriptions

8.1.1. OpenStack Services HA test specification

8.1.1.1. Scope

The HA test area evaluates the ability of the System Under Test to support service
continuity and recovery from component failures on part of OpenStack controller services(“nova-api”,
“neutron-server”, “keystone”, “glance-api”, “cinder-api”) and on “load balancer” service.

The tests in this test area will emulate component failures by killing the
processes of above target services, stressing the CPU load or blocking
disk I/O on the selected controller node, and then check if the impacted
services are still available and the killed processes are recovered on the
selected controller node within a given time interval.

8.1.1.2. References

This test area references the following specifications:

	ETSI GS NFV-REL 001

	https://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_nfv-rel001v010101p.pdf

	OpenStack High Availability Guide

	https://docs.openstack.org/ha-guide/

8.1.1.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test area

	SUT - system under test

	Monitor - tools used to measure the service outage time and the process
outage time

	Service outage time - the outage time (seconds) of the specific OpenStack
service

	Process outage time - the outage time (seconds) from the specific processes
being killed to recovered

8.1.1.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

SUT is assumed to be in high availability configuration, which typically means
more than one controller nodes are in the System Under Test.

8.1.1.5. Test Area Structure

The HA test area is structured with the following test cases in a sequential
manner.

Each test case is able to run independently. Preceding test case’s failure will
not affect the subsequent test cases.

Preconditions of each test case will be described in the following test
descriptions.

8.1.1.6. Test Descriptions

8.1.1.6.1. Test Case 1 - Controller node OpenStack service down - nova-api

8.1.1.6.1.1. Short name

yardstick.ha.nova_api

Yardstick test case: opnfv_yardstick_tc019.yaml

8.1.1.6.1.2. Use case specification

This test case verifies the service continuity capability in the face of the
software process failure. It kills the processes of OpenStack “nova-api”
service on the selected controller node, then checks whether the “nova-api”
service is still available during the failure, by creating a VM then deleting
the VM, and checks whether the killed processes are recovered within a given
time interval.

8.1.1.6.1.3. Test preconditions

There is more than one controller node, which is providing the “nova-api”
service for API end-point.

Denoted a controller node as Node1 in the following configuration.

8.1.1.6.1.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.1.4.1. Methodology for verifying service continuity and recovery

The service continuity and process recovery capabilities of “nova-api” service
is evaluated by monitoring service outage time, process outage time, and results
of nova operations.

Service outage time is measured by continuously executing “openstack server list”
command in loop and checking if the response of the command request is returned
with no failure.
When the response fails, the “nova-api” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is measured by checking the status of “nova-api” processes on
the selected controller node. The time of “nova-api” processes being killed to
the time of the “nova-api” processes being recovered is the process outage time.
Process recovery is verified by checking the existence of “nova-api” processes.

All nova operations are carried out correctly within a given time interval which
suggests that the “nova-api” service is continuously available.

8.1.1.6.1.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that “nova-api”
processes are running on Node1

	Test action 2: Create a image with “openstack image create test-cirros
–file cirros-0.3.5-x86_64-disk.img –disk-format qcow2 –container-format bare”

	Test action 3: Execute”openstack flavor create m1.test –id auto –ram 512
–disk 1 –vcpus 1” to create flavor “m1.test”.

	Test action 4: Start two monitors: one for “nova-api” processes and the other
for “openstack server list” command.
Each monitor will run as an independent process

	Test action 5: Connect to Node1 through SSH, and then kill the “nova-api”
processes

	Test action 6: When “openstack server list” returns with no error, calculate
the service outage time, and execute command “openstack server create
–flavor m1.test –image test-cirros test-instance”

	Test action 7: Continuously Execute “openstack server show test-instance”
to check if the status of VM “test-instance” is “Active”

	Test action 8: If VM “test-instance” is “Active”, execute “openstack server
delete test-instance”, then execute “openstack server list” to check if the
VM is not in the list

	Test action 9: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.1.4.3. Pass / fail criteria

The process outage time is less than 30s.

The service outage time is less than 5s.

The nova operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.1.5. Post conditions

Restart the process of “nova-api” if they are not running.

Delete image with “openstack image delete test-cirros”.

Delete flavor with “openstack flavor delete m1.test”.

8.1.1.6.2. Test Case 2 - Controller node OpenStack service down - neutron-server

8.1.1.6.2.1. Short name

yardstick.ha.neutron_server

Yardstick test case: opnfv_yardstick_tc045.yaml

8.1.1.6.2.2. Use case specification

This test verifies the high availability of the “neutron-server” service
provided by OpenStack controller nodes. It kills the processes of OpenStack
“neutron-server” service on the selected controller node, then checks whether
the “neutron-server” service is still available, by creating a network and
deleting the network, and checks whether the killed processes are recovered.

8.1.1.6.2.3. Test preconditions

There is more than one controller node, which is providing the “neutron-server”
service for API end-point.

Denoted a controller node as Node1 in the following configuration.

8.1.1.6.2.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.2.4.1. Methodology for monitoring high availability

The high availability of “neutron-server” service is evaluated by monitoring
service outage time, process outage time, and results of neutron operations.

Service outage time is tested by continuously executing “openstack router list”
command in loop and checking if the response of the command request is returned
with no failure.
When the response fails, the “neutron-server” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of “neutron-server”
processes on the selected controller node. The time of “neutron-server”
processes being killed to the time of the “neutron-server” processes being
recovered is the process outage time. Process recovery is verified by checking
the existence of “neutron-server” processes.

8.1.1.6.2.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that “neutron-server”
processes are running on Node1

	Test action 2: Start two monitors: one for “neutron-server” process and the
other for “openstack router list” command.
Each monitor will run as an independent process.

	Test action 3: Connect to Node1 through SSH, and then kill the
“neutron-server” processes

	Test action 4: When “openstack router list” returns with no error, calculate
the service outage time, and execute “openstack network create test-network”

	Test action 5: Continuously executing “openstack network show test-network”,
check if the status of “test-network” is “Active”

	Test action 6: If “test-network” is “Active”, execute “openstack network
delete test-network”, then execute “openstack network list” to check if the
“test-network” is not in the list

	Test action 7: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.2.4.3. Pass / fail criteria

The process outage time is less than 30s.

The service outage time is less than 5s.

The neutron operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.2.5. Post conditions

Restart the processes of “neutron-server” if they are not running.

8.1.1.6.3. Test Case 3 - Controller node OpenStack service down - keystone

8.1.1.6.3.1. Short name

yardstick.ha.keystone

Yardstick test case: opnfv_yardstick_tc046.yaml

8.1.1.6.3.2. Use case specification

This test verifies the high availability of the “keystone” service provided by
OpenStack controller nodes. It kills the processes of OpenStack “keystone”
service on the selected controller node, then checks whether the “keystone”
service is still available by executing command “openstack user list” and
whether the killed processes are recovered.

8.1.1.6.3.3. Test preconditions

There is more than one controller node, which is providing the “keystone”
service for API end-point.

Denoted a controller node as Node1 in the following configuration.

8.1.1.6.3.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.3.4.1. Methodology for monitoring high availability

The high availability of “keystone” service is evaluated by monitoring service
outage time and process outage time

Service outage time is tested by continuously executing “openstack user list”
command in loop and checking if the response of the command request is reutrned
with no failure.
When the response fails, the “keystone” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of “keystone” processes on
the selected controller node. The time of “keystone” processes being killed to
the time of the “keystone” processes being recovered is the process outage
time. Process recovery is verified by checking the existence of “keystone”
processes.

8.1.1.6.3.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that “keystone”
processes are running on Node1

	Test action 2: Start two monitors: one for “keystone” process and the other
for “openstack user list” command.
Each monitor will run as an independent process.

	Test action 3: Connect to Node1 through SSH, and then kill the “keystone”
processes

	Test action 4: Calculate the service outage time and process outage time

	Test action 5: The test passes if process outage time is less than 20s and
service outage time is less than 5s

	Test action 6: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.3.4.3. Pass / fail criteria

The process outage time is less than 30s.

The service outage time is less than 5s.

A negative result will be generated if the above is not met in completion.

8.1.1.6.3.5. Post conditions

Restart the processes of “keystone” if they are not running.

8.1.1.6.4. Test Case 4 - Controller node OpenStack service down - glance-api

8.1.1.6.4.1. Short name

yardstick.ha.glance_api

Yardstick test case: opnfv_yardstick_tc047.yaml

8.1.1.6.4.2. Use case specification

This test verifies the high availability of the “glance-api” service provided
by OpenStack controller nodes. It kills the processes of OpenStack “glance-api”
service on the selected controller node, then checks whether the “glance-api”
service is still available, by creating image and deleting image, and checks
whether the killed processes are recovered.

8.1.1.6.4.3. Test preconditions

There is more than one controller node, which is providing the “glance-api”
service for API end-point.

Denoted a controller node as Node1 in the following configuration.

8.1.1.6.4.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.4.4.1. Methodology for monitoring high availability

The high availability of “glance-api” service is evaluated by monitoring
service outage time, process outage time, and results of glance operations.

Service outage time is tested by continuously executing “openstack image list”
command in loop and checking if the response of the command request is returned
with no failure.
When the response fails, the “glance-api” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of “glance-api” processes
on the selected controller node. The time of “glance-api” processes being
killed to the time of the “glance-api” processes being recovered is the process
outage time. Process recovery is verified by checking the existence of
“glance-api” processes.

8.1.1.6.4.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that “glance-api”
processes are running on Node1

	Test action 2: Start two monitors: one for “glance-api” process and the other
for “openstack image list” command.
Each monitor will run as an independent process.

	Test action 3: Connect to Node1 through SSH, and then kill the “glance-api”
processes

	Test action 4: When “openstack image list” returns with no error, calculate
the service outage time, and execute “openstack image create test-image
–file cirros-0.3.5-x86_64-disk.img –disk-format qcow2 –container-format bare”

	Test action 5: Continuously execute “openstack image show test-image”, check
if status of “test-image” is “active”

	Test action 6: If “test-image” is “active”, execute “openstack image delete
test-image”. Then execute “openstack image list” to check if “test-image” is
not in the list

	Test action 7: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.4.4.3. Pass / fail criteria

The process outage time is less than 30s.

The service outage time is less than 5s.

The glance operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.4.5. Post conditions

Restart the processes of “glance-api” if they are not running.

Delete image with “openstack image delete test-image”.

8.1.1.6.5. Test Case 5 - Controller node OpenStack service down - cinder-api

8.1.1.6.5.1. Short name

yardstick.ha.cinder_api

Yardstick test case: opnfv_yardstick_tc048.yaml

8.1.1.6.5.2. Use case specification

This test verifies the high availability of the “cinder-api” service provided
by OpenStack controller nodes. It kills the processes of OpenStack “cinder-api”
service on the selected controller node, then checks whether the “cinder-api”
service is still available by executing command “openstack volume list” and
whether the killed processes are recovered.

8.1.1.6.5.3. Test preconditions

There is more than one controller node, which is providing the “cinder-api”
service for API end-point.

Denoted a controller node as Node1 in the following configuration.

8.1.1.6.5.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.5.4.1. Methodology for monitoring high availability

The high availability of “cinder-api” service is evaluated by monitoring
service outage time and process outage time

Service outage time is tested by continuously executing “openstack volume list”
command in loop and checking if the response of the command request is returned
with no failure.
When the response fails, the “cinder-api” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of “cinder-api” processes
on the selected controller node. The time of “cinder-api” processes being
killed to the time of the “cinder-api” processes being recovered is the process
outage time. Process recovery is verified by checking the existence of
“cinder-api” processes.

8.1.1.6.5.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that “cinder-api”
processes are running on Node1

	Test action 2: Start two monitors: one for “cinder-api” process and the other
for “openstack volume list” command.
Each monitor will run as an independent process.

	Test action 3: Connect to Node1 through SSH, and then execute kill the
“cinder-api” processes

	Test action 4: Continuously measure service outage time from the monitor until
the service outage time is more than 5s

	Test action 5: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.5.4.3. Pass / fail criteria

The process outage time is less than 30s.

The service outage time is less than 5s.

The cinder operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.5.5. Post conditions

Restart the processes of “cinder-api” if they are not running.

8.1.1.6.6. Test Case 6 - Controller Node CPU Overload High Availability

8.1.1.6.6.1. Short name

yardstick.ha.cpu_load

Yardstick test case: opnfv_yardstick_tc051.yaml

8.1.1.6.6.2. Use case specification

This test verifies the availability of services when one of the controller node
suffers from heavy CPU overload. When the CPU usage of the specified controller
node is up to 100%, which breaks down the OpenStack services on this node,
the Openstack services should continue to be available. This test case stresses
the CPU usage of a specific controller node to 100%, then checks whether all
services provided by the SUT are still available with the monitor tools.

8.1.1.6.6.3. Test preconditions

There is more than one controller node, which is providing the “cinder-api”,
“neutron-server”, “glance-api” and “keystone” services for API end-point.

Denoted a controller node as Node1 in the following configuration.

8.1.1.6.6.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.6.4.1. Methodology for monitoring high availability

The high availability of related OpenStack service is evaluated by monitoring service
outage time

Service outage time is tested by continuously executing “openstack router list”,
“openstack stack list”, “openstack volume list”, “openstack image list” commands
in loop and checking if the response of the command request is returned with no
failure.
When the response fails, the related service is considered in outage. The time
between the first response failure and the last response failure is considered
as service outage time.

8.1.1.6.6.4.2. Methodology for stressing CPU usage

To evaluate the high availability of target OpenStack service under heavy CPU
load, the test case will first get the number of logical CPU cores on the
target controller node by shell command, then use the number to execute ‘dd’
command to continuously copy from /dev/zero and output to /dev/null in loop.
The ‘dd’ operation only uses CPU, no I/O operation, which is ideal for
stressing the CPU usage.

Since the ‘dd’ command is continuously executed and the CPU usage rate is
stressed to 100%, the scheduler will schedule each ‘dd’ command to be
processed on a different logical CPU core. Eventually to achieve all logical
CPU cores usage rate to 100%.

8.1.1.6.6.4.3. Test execution

	Test action 1: Start four monitors: one for “openstack image list” command,
one for “openstack router list” command, one for “openstack stack list”
command and the last one for “openstack volume list” command. Each monitor
will run as an independent process.

	Test action 2: Connect to Node1 through SSH, and then stress all logical CPU
cores usage rate to 100%

	Test action 3: Continuously measure all the service outage times until they are
more than 5s

	Test action 4: Kill the process that stresses the CPU usage

8.1.1.6.6.4.4. Pass / fail criteria

All the service outage times are less than 5s.

A negative result will be generated if the above is not met in completion.

8.1.1.6.6.5. Post conditions

No impact on the SUT.

8.1.1.6.7. Test Case 7 - Controller Node Disk I/O Overload High Availability

8.1.1.6.7.1. Short name

yardstick.ha.disk_load

Yardstick test case: opnfv_yardstick_tc052.yaml

8.1.1.6.7.2. Use case specification

This test verifies the high availability of control node. When the disk I/O of
the specific disk is overload, which breaks down the OpenStack services on this
node, the read and write services should continue to be available. This test
case blocks the disk I/O of the specific controller node, then checks whether
the services that need to read or write the disk of the controller node are
available with some monitor tools.

8.1.1.6.7.3. Test preconditions

There is more than one controller node.
Denoted a controller node as Node1 in the following configuration.
The controller node has at least 20GB free disk space.

8.1.1.6.7.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.7.4.1. Methodology for monitoring high availability

The high availability of nova service is evaluated by monitoring
service outage time

Service availability is tested by continuously executing
“openstack flavor list” command in loop and checking if the response of the
command request is returned with no failure.
When the response fails, the related service is considered in outage.

8.1.1.6.7.4.2. Methodology for stressing disk I/O

To evaluate the high availability of target OpenStack service under heavy I/O
load, the test case will execute shell command on the selected controller node
to continuously writing 8kb blocks to /test.dbf

8.1.1.6.7.4.3. Test execution

	Test action 1: Connect to Node1 through SSH, and then stress disk I/O by
continuously writing 8kb blocks to /test.dbf

	Test action 2: Start a monitor: for “openstack flavor list” command

	Test action 3: Create a flavor called “test-001”

	Test action 4: Check whether the flavor “test-001” is created

	Test action 5: Continuously measure service outage time from the monitor
until the service outage time is more than 5s

	Test action 6: Stop writing to /test.dbf and delete file /test.dbf

8.1.1.6.7.4.4. Pass / fail criteria

The service outage time is less than 5s.

The nova operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.7.5. Post conditions

Delete flavor with “openstack flavor delete test-001”.

8.1.1.6.8. Test Case 8 - Controller Load Balance as a Service High Availability

8.1.1.6.8.1. Short name

yardstick.ha.haproxy

Yardstick test case: opnfv_yardstick_tc053.yaml

8.1.1.6.8.2. Use case specification

This test verifies the high availability of “haproxy” service. When
the “haproxy” service of a specified controller node is killed, whether
“haproxy” service on other controller nodes will work, and whether the
controller node will restart the “haproxy” service are checked. This
test case kills the processes of “haproxy” service on the selected
controller node, then checks whether the request of the related OpenStack
command is processed with no failure and whether the killed processes are
recovered.

8.1.1.6.8.3. Test preconditions

There is more than one controller node, which is providing the “haproxy”
service for rest-api.

Denoted as Node1 in the following configuration.

8.1.1.6.8.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.8.4.1. Methodology for monitoring high availability

The high availability of “haproxy” service is evaluated by monitoring
service outage time and process outage time

Service outage time is tested by continuously executing “openstack image list”
command in loop and checking if the response of the command request is returned
with no failure.
When the response fails, the “haproxy” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of processes of “haproxy”
service on the selected controller node. The time of those processes
being killed to the time of those processes being recovered is the process
outage time.
Process recovery is verified by checking the existence of processes of “haproxy” service.

8.1.1.6.8.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that processes of
“haproxy” service are running on Node1

	Test action 2: Start two monitors: one for processes of “haproxy”
service and the other for “openstack image list” command. Each monitor will
run as an independent process

	Test action 3: Connect to Node1 through SSH, and then kill the processes of
“haproxy” service

	Test action 4: Continuously measure service outage time from the monitor until
the service outage time is more than 5s

	Test action 5: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.8.4.3. Pass / fail criteria

The process outage time is less than 30s.

The service outage time is less than 5s.

A negative result will be generated if the above is not met in completion.

8.1.1.6.8.5. Post conditions

Restart the processes of “haproxy” if they are not running.

8.1.1.6.9. Test Case 9 - Controller node OpenStack service down - Database

8.1.1.6.9.1. Short name

yardstick.ha.database

Yardstick test case: opnfv_yardstick_tc090.yaml

8.1.1.6.9.2. Use case specification

This test case verifies that the high availability of the data base instances
used by OpenStack (mysql) on control node is working properly.
Specifically, this test case kills the processes of database service on a
selected control node, then checks whether the request of the related
OpenStack command is OK and the killed processes are recovered.

8.1.1.6.9.3. Test preconditions

In this test case, an attacker called “kill-process” is needed.
This attacker includes three parameters: fault_type, process_name and host.

The purpose of this attacker is to kill any process with a specific process
name which is run on the host node. In case that multiple processes use the
same name on the host node, all of them are going to be killed by this attacker.

8.1.1.6.9.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.9.4.1. Methodology for verifying service continuity and recovery

In order to verify this service two different monitors are going to be used.

As first monitor is used a OpenStack command and acts as watcher for
database connection of different OpenStack components.

For second monitor is used a process monitor and the main purpose is to watch
whether the database processes on the host node are killed properly.

Therefore, in this test case, there are two metrics:

	service_outage_time, which indicates the maximum outage time (seconds)
of the specified OpenStack command request

	process_recover_time, which indicates the maximum time (seconds) from the
process being killed to recovered

8.1.1.6.9.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that “database”
processes are running on Node1

	Test action 2: Start two monitors: one for “database” processes on the host
node and the other for connection toward database from OpenStack
components, verifying the results of openstack image list, openstack router list,
openstack stack list and openstack volume list.
Each monitor will run as an independent process

	Test action 3: Connect to Node1 through SSH, and then kill the “mysql”
process(es)

	Test action 4: Stop monitors after a period of time specified by “waiting_time”.
The monitor info will be aggregated.

	Test action 5: Verify the SLA and set the verdict of the test case to pass or fail.

8.1.1.6.9.4.3. Pass / fail criteria

Check whether the SLA is passed:
- The process outage time is less than 30s.
- The service outage time is less than 5s.

The database operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.9.5. Post conditions

The database service is up and running again.
If the database service did not recover successfully by itself,
the test explicitly restarts the database service.

8.1.1.6.10. Test Case 10 - Controller Messaging Queue as a Service High Availability

8.1.1.6.10.1. Short name

yardstick.ha.rabbitmq

Yardstick test case: opnfv_yardstick_tc056.yaml

8.1.1.6.10.2. Use case specification

This test case will verify the high availability of the messaging queue
service (RabbitMQ) that supports OpenStack on controller node. This
test case expects that message bus service implementation is RabbitMQ.
If the SUT uses a different message bus implementations, the Dovetail
configuration (pod.yaml) can be changed accordingly. When messaging
queue service (which is active) of a specified controller node
is killed, the test case will check whether messaging queue services
(which are standby) on other controller nodes will be switched active,
and whether the cluster manager on the attacked controller node will
restart the stopped messaging queue.

8.1.1.6.10.3. Test preconditions

There is more than one controller node, which is providing the “messaging queue”
service. Denoted as Node1 in the following configuration.

8.1.1.6.10.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.10.4.1. Methodology for verifying service continuity and recovery

The high availability of “messaging queue” service is evaluated by monitoring
service outage time and process outage time.

Service outage time is tested by continuously executing “openstack image list”,
“openstack network list”, “openstack volume list” and “openstack stack list”
commands in loop and checking if the responses of the command requests are
returned with no failure.
When the response fails, the “messaging queue” service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of processes of “messaging
queue” service on the selected controller node. The time of those processes
being killed to the time of those processes being recovered is the process
outage time.
Process recovery is verified by checking the existence of processes of
“messaging queue” service.

8.1.1.6.10.4.2. Test execution

	Test action 1: Start five monitors: one for processes of “messaging queue”
service and the others for “openstack image list”, “openstack network list”,
“openstack stack list” and “openstack volume list” command. Each monitor
will run as an independent process

	Test action 2: Connect to Node1 through SSH, and then kill all the processes of
“messaging queue” service

	Test action 3: Continuously measure service outage time from the monitors until
the service outage time is more than 5s

	Test action 4: Continuously measure process outage time from the monitor until
the process outage time is more than 30s

8.1.1.6.10.4.3. Pass / fail criteria

Test passes if the process outage time is no more than 30s and
the service outage time is no more than 5s.

A negative result will be generated if the above is not met in completion.

8.1.1.6.10.5. Post conditions

Restart the processes of “messaging queue” if they are not running.

8.1.1.6.11. Test Case 11 - Controller node OpenStack service down - Controller Restart

8.1.1.6.11.1. Short name

yardstick.ha.controller_restart

Yardstick test case: opnfv_yardstick_tc025.yaml

8.1.1.6.11.2. Use case specification

This test case verifies that the high availability of controller node is working
properly.
Specifically, this test case shutdowns a specified controller node via IPMI,
then checks whether all services provided by the controller node are OK with
some monitor tools.

8.1.1.6.11.3. Test preconditions

In this test case, an attacker called “host-shutdown” is needed.
This attacker includes two parameters: fault_type and host.

The purpose of this attacker is to shutdown a controller and check whether the
services are handled by this controller are still working normally.

8.1.1.6.11.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.11.4.1. Methodology for verifying service continuity and recovery

In order to verify this service one monitor is going to be used.

This monitor is using an OpenStack command and the respective command name of
the OpenStack component that we want to verify that the respective service is
still running normally.

In this test case, there is one metric: 1)service_outage_time: which indicates
the maximum outage time (seconds) of the specified OpenStack command request.

8.1.1.6.11.4.2. Test execution

	Test action 1: Connect to Node1 through SSH, and check that controller services
are running normally

	Test action 2: Start monitors: each monitor will run as independently
process, monitoring the image list, router list, stack list and volume list accordingly.
The monitor info will be collected.

	Test action 3: Using the IPMI component, the Node1 is shut-down remotely.

	Test action 4: Stop monitors after a period of time specified by “waiting_time”.
The monitor info will be aggregated.

	Test action 5: Verify the SLA and set the verdict of the test case to pass or fail.

8.1.1.6.11.4.3. Pass / fail criteria

Check whether the SLA is passed:
- The process outage time is less than 30s.
- The service outage time is less than 5s.

The controller operations are carried out in above order and no errors occur.

A negative result will be generated if the above is not met in completion.

8.1.1.6.11.5. Post conditions

The controller has been restarted

8.1.1.6.12. Test Case 12 - OpenStack Controller Virtual Router Service High Availability

8.1.1.6.12.1. Short name

yardstick.ha.neutron_l3_agent

Yardstick test case: opnfv_yardstick_tc058.yaml

8.1.1.6.12.2. Use case specification

This test case will verify the high availability of virtual routers(L3 agent)
on controller node. When a virtual router service on a specified controller
node is shut down, this test case will check whether the network of virtual
machines will be affected, and whether the attacked virtual router service
will be recovered.

8.1.1.6.12.3. Test preconditions

There is more than one controller node, which is providing the Neutron API
extension called “neutron-l3-agent” virtual router service API.

Denoted as Node1 in the following configuration.

8.1.1.6.12.4. Basic test flow execution description and pass/fail criteria

8.1.1.6.12.4.1. Methodology for verifying service continuity and recovery

The high availability of “neutrol-l3-agent” virtual router service is evaluated
by monitoring service outage time and process outage time.

Service outage is tested using ping to virtual machines. Ping tests that
the network routing of virtual machines is ok.
When the response fails, the virtual router service is considered in outage.
The time between the first response failure and the last response failure is
considered as service outage time.

Process outage time is tested by checking the status of processes of “neutron-l3-agent”
service on the selected controller node. The time of those processes being
killed to the time of those processes being recovered is the process outage time.

Process recovery is verified by checking the existence of processes of
“neutron-l3-agent” service.

8.1.1.6.12.4.2. Test execution

	Test action 1: Two host VMs are booted, these two hosts are in two different
networks, the networks are connected by a virtual router.

	Test action 2: Start monitors: each monitor will run with independently process.
The monitor info will be collected.

	Test action 3: Do attacker: Connect the host through SSH, and then execute the kill
process script with param value specified by “process_name”

	Test action 4: Stop monitors after a period of time specified by “waiting_time”
The monitor info will be aggregated.

	Test action 5: Verify the SLA and set the verdict of the test case to pass or fail.

8.1.1.6.12.4.3. Pass / fail criteria

Check whether the SLA is passed:
- The process outage time is less than 30s.
- The service outage time is less than 5s.

A negative result will be generated if the above is not met in completion.

8.1.1.6.12.5. Post conditions

Delete image with “openstack image delete neutron-l3-agent_ha_image”.

Delete flavor with “openstack flavor delete neutron-l3-agent_ha_flavor”.

8.1.2. Patrole Tempest Tests

8.1.2.1. Scope

This test area evaluates the ability of a system under test to support the
role-based access control (RBAC) implementation.
The test area specifically validates services image and networking.

8.1.2.2. References

	OpenStack image service API reference [https://docs.openstack.org/api-ref/image/v2/index.html]

	OpenStack metadata definitions service API reference [https://docs.openstack.org/api-ref/image/v2/metadefs-index.html]

	OpenStack layer 2 networking service API reference [https://docs.openstack.org/api-ref/network/v2/index.html#layer-2-networking]

	OpenStack layer 3 networking service API reference [https://docs.openstack.org/api-ref/network/v2/index.html#layer-3-networking]

	OpenStack network security API reference [https://docs.openstack.org/api-ref/network/v2/index.html#security]

	OpenStack resource management API reference [https://docs.openstack.org/api-ref/network/v2/index.html#resource-management]

8.1.2.3. System Under Test (SUT)

The system under test is assumed to be the NFVI and VIM deployed on a Pharos
compliant infrastructure.

8.1.2.4. Test Area Structure

The test area is structured in individual tests as listed below. Each test case
is able to run independently, i.e. irrelevant of the state created by a previous
test. For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links.

Image basic RBAC test:

These tests cover the RBAC tests of image basic operations.

Implementation:
BasicOperationsImagesRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_images_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_create_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_create_image_tag

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_deactivate_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_delete_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_delete_image_tag

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_download_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_list_images

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_publicize_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_reactivate_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_show_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_update_image

	patrole_tempest_plugin.tests.api.image.test_images_rbac.BasicOperationsImagesRbacTest.test_upload_image

Image namespaces RBAC test:

These tests cover the RBAC tests of image namespaces.

Implementation:
ImageNamespacesRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_image_namespace_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_image_namespace_rbac.ImageNamespacesRbacTest.test_create_metadef_namespace

	patrole_tempest_plugin.tests.api.image.test_image_namespace_rbac.ImageNamespacesRbacTest.test_modify_metadef_namespace

Image namespaces objects RBAC test:

These tests cover the RBAC tests of image namespaces objects.

Implementation:
ImageNamespacesObjectsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_image_namespace_objects_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_image_namespace_objects_rbac.ImageNamespacesObjectsRbacTest.test_create_metadef_object_in_namespace

	patrole_tempest_plugin.tests.api.image.test_image_namespace_objects_rbac.ImageNamespacesObjectsRbacTest.test_list_metadef_objects_in_namespace

	patrole_tempest_plugin.tests.api.image.test_image_namespace_objects_rbac.ImageNamespacesObjectsRbacTest.test_show_metadef_object_in_namespace

	patrole_tempest_plugin.tests.api.image.test_image_namespace_objects_rbac.ImageNamespacesObjectsRbacTest.test_update_metadef_object_in_namespace

Image namespaces property RBAC test:

These tests cover the RBAC tests of image namespaces property.

Implementation:
NamespacesPropertyRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_image_namespace_property_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_image_namespace_property_rbac.NamespacesPropertyRbacTest.test_add_md_properties

	patrole_tempest_plugin.tests.api.image.test_image_namespace_property_rbac.NamespacesPropertyRbacTest.test_get_md_properties

	patrole_tempest_plugin.tests.api.image.test_image_namespace_property_rbac.NamespacesPropertyRbacTest.test_get_md_property

	patrole_tempest_plugin.tests.api.image.test_image_namespace_property_rbac.NamespacesPropertyRbacTest.test_modify_md_properties

Image namespaces tags RBAC test:

These tests cover the RBAC tests of image namespaces tags.

Implementation:
NamespaceTagsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_image_namespace_tags_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_image_namespace_tags_rbac.NamespaceTagsRbacTest.test_create_namespace_tag

	patrole_tempest_plugin.tests.api.image.test_image_namespace_tags_rbac.NamespaceTagsRbacTest.test_create_namespace_tags

	patrole_tempest_plugin.tests.api.image.test_image_namespace_tags_rbac.NamespaceTagsRbacTest.test_list_namespace_tags

	patrole_tempest_plugin.tests.api.image.test_image_namespace_tags_rbac.NamespaceTagsRbacTest.test_show_namespace_tag

	patrole_tempest_plugin.tests.api.image.test_image_namespace_tags_rbac.NamespaceTagsRbacTest.test_update_namespace_tag

Image resource types RBAC test:

These tests cover the RBAC tests of image resource types.

Implementation:
ImageResourceTypesRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_image_resource_types_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_image_resource_types_rbac.ImageResourceTypesRbacTest.test_add_metadef_resource_type

	patrole_tempest_plugin.tests.api.image.test_image_resource_types_rbac.ImageResourceTypesRbacTest.test_get_metadef_resource_type

	patrole_tempest_plugin.tests.api.image.test_image_resource_types_rbac.ImageResourceTypesRbacTest.test_list_metadef_resource_types

Image member RBAC test:

These tests cover the RBAC tests of image member.

Implementation:
ImagesMemberRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/image/test_images_member_rbac.py]

	patrole_tempest_plugin.tests.api.image.test_images_member_rbac.ImagesMemberRbacTest.test_add_image_member

	patrole_tempest_plugin.tests.api.image.test_images_member_rbac.ImagesMemberRbacTest.test_delete_image_member

	patrole_tempest_plugin.tests.api.image.test_images_member_rbac.ImagesMemberRbacTest.test_list_image_members

	patrole_tempest_plugin.tests.api.image.test_images_member_rbac.ImagesMemberRbacTest.test_show_image_member

Network agents RBAC test:

These tests cover the RBAC tests of network agents.

Implementation:
AgentsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_agents_rbac.py#L24] and
DHCPAgentSchedulersRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_agents_rbac.py#L147].

	patrole_tempest_plugin.tests.api.network.test_agents_rbac.AgentsRbacTest.test_show_agent

	patrole_tempest_plugin.tests.api.network.test_agents_rbac.AgentsRbacTest.test_update_agent

	patrole_tempest_plugin.tests.api.network.test_agents_rbac.DHCPAgentSchedulersRbacTest.test_add_dhcp_agent_to_network

	patrole_tempest_plugin.tests.api.network.test_agents_rbac.DHCPAgentSchedulersRbacTest.test_delete_network_from_dhcp_agent

	patrole_tempest_plugin.tests.api.network.test_agents_rbac.DHCPAgentSchedulersRbacTest.test_list_networks_hosted_by_one_dhcp_agent

Network floating ips RBAC test:

These tests cover the RBAC tests of network floating ips.

Implementation:
FloatingIpsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_floating_ips_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_floating_ips_rbac.FloatingIpsRbacTest.test_create_floating_ip

	patrole_tempest_plugin.tests.api.network.test_floating_ips_rbac.FloatingIpsRbacTest.test_create_floating_ip_floatingip_address

	patrole_tempest_plugin.tests.api.network.test_floating_ips_rbac.FloatingIpsRbacTest.test_delete_floating_ip

	patrole_tempest_plugin.tests.api.network.test_floating_ips_rbac.FloatingIpsRbacTest.test_show_floating_ip

	patrole_tempest_plugin.tests.api.network.test_floating_ips_rbac.FloatingIpsRbacTest.test_update_floating_ip

Network basic RBAC test:

These tests cover the RBAC tests of network basic operations.

Implementation:
NetworksRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_networks_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_create_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_create_network_is_default

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_create_network_router_external

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_create_network_shared

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_delete_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_list_dhcp_agents_on_hosting_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_show_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_show_network_provider_network_type

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_show_network_provider_physical_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_show_network_provider_segmentation_id

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_show_network_router_external

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_update_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_update_network_provider_physical_network

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_update_network_provider_segmentation_id

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_update_network_router_external

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_update_network_shared

Network ports RBAC test:

These tests cover the RBAC tests of network ports.

Implementation:
PortsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_ports_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_allowed_address_pairs

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_binding_host_id

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_binding_profile

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_device_owner

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_fixed_ips_ip_address

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_mac_address

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_create_port_security_enabled

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_delete_port

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_show_port

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_show_port_binding_host_id

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_show_port_binding_profile

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_show_port_binding_vif_details

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_show_port_binding_vif_type

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_allowed_address_pairs

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_binding_host_id

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_binding_profile

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_device_owner

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_fixed_ips_ip_address

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_mac_address

	patrole_tempest_plugin.tests.api.network.test_ports_rbac.PortsRbacTest.test_update_port_security_enabled

Network routers RBAC test:

These tests cover the RBAC tests of network routers.

Implementation:
RouterRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_routers_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_add_router_interface

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_create_router

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_create_router_enable_snat

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_create_router_external_fixed_ips

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_delete_router

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_remove_router_interface

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_show_high_availability_router

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_show_router

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_update_router

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_update_router_enable_snat

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_update_router_external_fixed_ips

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_update_router_external_gateway_info

	patrole_tempest_plugin.tests.api.network.test_routers_rbac.RouterRbacTest.test_update_router_external_gateway_info_network_id

Network security groups RBAC test:

These tests cover the RBAC tests of network security groups.

Implementation:
SecGroupRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_security_groups_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_create_security_group

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_create_security_group_rule

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_delete_security_group

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_delete_security_group_rule

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_list_security_group_rules

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_list_security_groups

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_show_security_group_rule

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_show_security_group

	patrole_tempest_plugin.tests.api.network.test_security_groups_rbac.SecGroupRbacTest.test_update_security_group

Network service providers RBAC test:

These tests cover the RBAC tests of network service providers.

Implementation:
ServiceProvidersRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_service_providers_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_service_providers_rbac.ServiceProvidersRbacTest.test_list_service_providers

Network subnetpools RBAC test:

These tests cover the RBAC tests of network subnetpools.

Implementation:
SubnetPoolsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_subnetpools_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_subnetpools_rbac.SubnetPoolsRbacTest.test_create_subnetpool

	patrole_tempest_plugin.tests.api.network.test_subnetpools_rbac.SubnetPoolsRbacTest.test_create_subnetpool_shared

	patrole_tempest_plugin.tests.api.network.test_subnetpools_rbac.SubnetPoolsRbacTest.test_delete_subnetpool

	patrole_tempest_plugin.tests.api.network.test_subnetpools_rbac.SubnetPoolsRbacTest.test_show_subnetpool

	patrole_tempest_plugin.tests.api.network.test_subnetpools_rbac.SubnetPoolsRbacTest.test_update_subnetpool

	patrole_tempest_plugin.tests.api.network.test_subnetpools_rbac.SubnetPoolsRbacTest.test_update_subnetpool_is_default

Network subnets RBAC test:

These tests cover the RBAC tests of network subnets.

Implementation:
SubnetsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_subnets_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_subnets_rbac.SubnetsRbacTest.test_create_subnet

	patrole_tempest_plugin.tests.api.network.test_subnets_rbac.SubnetsRbacTest.test_delete_subnet

	patrole_tempest_plugin.tests.api.network.test_subnets_rbac.SubnetsRbacTest.test_list_subnets

	patrole_tempest_plugin.tests.api.network.test_subnets_rbac.SubnetsRbacTest.test_show_subnet

	patrole_tempest_plugin.tests.api.network.test_subnets_rbac.SubnetsRbacTest.test_update_subnet

Network flavors RBAC test:

These tests cover the RBAC tests of network flavors.

Implementation:
FlavorsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_flavors_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_flavors_rbac.FlavorsPluginRbacTest.test_create_flavor

	patrole_tempest_plugin.tests.api.network.test_flavors_rbac.FlavorsPluginRbacTest.test_delete_flavor

	patrole_tempest_plugin.tests.api.network.test_flavors_rbac.FlavorsPluginRbacTest.test_list_flavors

	patrole_tempest_plugin.tests.api.network.test_flavors_rbac.FlavorsPluginRbacTest.test_show_flavor

	patrole_tempest_plugin.tests.api.network.test_flavors_rbac.FlavorsPluginRbacTest.test_update_flavor

Network segments RBAC test:

These tests cover the RBAC tests of network segments.

Implementation:
SegmentsRbacTest [https://github.com/openstack/patrole/blob/0.4.0/patrole_tempest_plugin/tests/api/network/test_network_segments_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_network_segments_rbac.NetworkSegmentsRbacTest.test_create_network_segments

	patrole_tempest_plugin.tests.api.network.test_network_segments_rbac.NetworkSegmentsRbacTest.test_show_network_segments

	patrole_tempest_plugin.tests.api.network.test_network_segments_rbac.NetworkSegmentsRbacTest.test_update_network_segments

8.1.3. Patrole Tempest Tests Depend on Vxlan

8.1.3.1. Scope

This test area includes some tempest role-based access control (RBAC) tests
which depend on vxlan physical networks.

8.1.3.2. References

	OpenStack image service API reference [https://docs.openstack.org/api-ref/image/v2/index.html]

	OpenStack metadata definitions service API reference [https://docs.openstack.org/api-ref/image/v2/metadefs-index.html]

	OpenStack layer 2 networking service API reference [https://docs.openstack.org/api-ref/network/v2/index.html#layer-2-networking]

	OpenStack layer 3 networking service API reference [https://docs.openstack.org/api-ref/network/v2/index.html#layer-3-networking]

	OpenStack network security API reference [https://docs.openstack.org/api-ref/network/v2/index.html#security]

	OpenStack resource management API reference [https://docs.openstack.org/api-ref/network/v2/index.html#resource-management]

8.1.3.3. System Under Test (SUT)

The system under test is assumed to be the NFVI and VIM deployed on a Pharos
compliant infrastructure.

8.1.3.4. Test Area Structure

The test area is structured in individual tests as listed below. Each test case
is able to run independently, i.e. irrelevant of the state created by a previous
test. For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links.

Network basic RBAC test:

These tests cover the RBAC tests of network basic operations by creating a vxlan provider network.

Implementation:
NetworksRbacTest [https://github.com/openstack/patrole/blob/0.2.0/patrole_tempest_plugin/tests/api/network/test_networks_rbac.py]

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_create_network_provider_network_type

	patrole_tempest_plugin.tests.api.network.test_networks_rbac.NetworksRbacTest.test_create_network_provider_segmentation_id

8.1.4. Stress Test Specification

8.1.4.1. Scope

The stress test involves testing and verifying the ability of the SUT to withstand
stress and other challenging factors. Main purpose behind the testing is to make sure
the SUT is able to absorb failures while providing an acceptable level of service.

8.1.4.2. References

This test area references the following specifications, definitions and reviews:

	Upstream OpenStack NOVA Resiliency

	https://wiki.openstack.org/wiki/NovaResiliency

	Stress Testing over OPNFV Platform

	https://wiki.opnfv.org/display/bottlenecks/Stress+Testing+over+OPNFV+Platform

8.1.4.3. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test area

	iff - if and only if

	NFVI - Network Functions Virtualization Infrastructure

	NaN - Not a Number

	Service Level - Measurable terms that describe the quality of the service provided by the SUT within a given time period

	SUT - System Under Test

	VM - Virtual Machine

8.1.4.4. System Under Test (SUT)

The system under test is assumed to be the NFVI and VIM in operation on a
Pharos compliant infrastructure.

8.1.4.5. Test Area Structure

According to the testing goals stated in the test scope section,
preceding test will not affect the subsequent test
as long as the SUT is able to sustain the given stress
while providing an acceptable level of service.
Any FAIL result from a single test case will cause the SUT failing the whole test.

8.1.4.6. Test Descriptions

8.1.4.6.1. Test Case 1 - Concurrent capacity based on life-cycle ping test

8.1.4.6.1.1. Short name

bottlenecks.stress.ping

8.1.4.6.1.2. Use case specification

This test case verifies the ability of the SUT concurrently setting up VM pairs
for different tenants (through different OpenStack related components) and
providing acceptable capacity under stressful conditions. The connectivity between
VMs in a VM pair for a tenant is validated through Ping test. A life-cycle event
in this test case is particularly referred to a VM pair life-cycle consisting of
spawning, pinging and destroying.

8.1.4.6.1.3. Test preconditions

	heat_template_version: 2013-05-23

	ElasticSearch Port: 9200

	LogStash Port: 5044

	Kibana Port: 5601

	Yardstick Port: 5000

8.1.4.6.1.4. Basic test flow execution description and pass/fail criteria

8.1.4.6.1.4.1. Methodology for validating capacity of the SUT

Validating capacity of the SUT based on life-cycle ping test generally involves
2 subtests which provides secondary validation for the SUT furnishing users with
reliable capacity without being crushed.

Let N1, N2, N3 and P1 be certain preset numbers, respectively.
In subtest 1, the SUT concurrently setting up N1 VM pairs with each VM pair
belonging to a different tenant. Then VM1 in a VM pair pings VM2 for P1 times
with P1 packets. The connectivity could be validated iff VM1 successfully pings
VM2 with these P1 packets.
Subtest 1 is finished iff all the concurrent (N1) requests for creating VM pairs
are fulfilled with returned values that indicate the statuses of the VM pairs creations.

Subtest 2 is executed after subtest 1 as secondary validation of the capacity.
It follows the same workflow as subtest 1 does to set up N2 VM pairs.

Assume S1 and S2 be the numbers of VM pairs that are successfully created in
subtest 1 and subtest 2, respectively. If min(S1,S2)>=N3, then the SUT is considered as PASS.
Otherwise, we denote the SUT with FAIL.

Note that for subtest 1, if the number of successfully created VM pairs, i.e., S1,
is smaller than N3. Subtest 2 will not be executed and SUT will be marked with FAIL.

8.1.4.6.1.4.2. Test execution

	Test action 1: Install the testing tools by pulling and running the Bottlenecks Docker container

	Test action 2: Prepare the test by sourcing openstack credential file,
eliminating the environment constraints, i.e., Quota setting, setting up
Yardstick docker, pulling and registering OS images and VM flavor

	Test action 3: Call Yardstick to concurrently creating N1 VM pairs for N1 tenants

	Test action 4: In each VM pair, VM1 pings VM2 for P1 times with P1 packets while recording the successful numbers

	Test action 5: Mark the VM pairs with P1 successful pings as PASS and record the total number of PASS VM pairs as S1

	Test action 6: Destroy all the VM pairs

	Test action 7: If S1<N3, the SUT is marked with FAIL and the test return. Otherwise go to Test action 8

	Test action 8: Go to Test action 3 and do the test again to create N2 VM pairs with PASS VM pairs counted as S2

	Test action 9: If S2<N3, the SUT is marked with FAIL. Otherwise marked with PASS.

8.1.4.6.1.4.3. Pass / Fail criteria

Typical setting of (N1, N2, N3, P1) is (5, 5, 5, 10).
The reference setting above is acquired based on the results from OPNFV CI jobs
and testing over commercial products.

The connectivity within a VM pair is validated iff:

	VM1 successfully pings VM2 for P1 times with P1 packets

The SUT is considered passing the test iff:

	min(S1,S2)>=N3

Note that after each subtest, the program will check if the successfully created number of VM pairs
is smaller than N3. If true, the program will return and the SUT will be marked with FAIL.
Then the passing criteria is equal to the equation above. When subtest 1 returns, S2 here is denoted
by NaN.

8.1.4.6.1.5. Post conditions

N/A

8.1.5. Tempest Compute test specification

8.1.5.1. Scope

The Tempest Compute test area evaluates the ability of the System Under Test (SUT)
to support dynamic network runtime operations through the life of a VNF.
The tests in this test area will evaluate IPv4 network runtime operations
functionality.

These runtime operations includes:

	Create, list and show flavors

	Create and list security group rules

	Create, delete and list security groups

	Create, delete, show and list interfaces; attach and deattach ports to servers

	List server addresses

	Individual version endpoints info works

	Servers Test Boot From Volume

8.1.5.2. References

Security Groups: [https://docs.openstack.org/api-ref/network/v2/index.html#security-groups-security-groups]

	create security group

	delete security group

Networks: [https://docs.openstack.org/api-ref/network/v2/index.html#networks]

	create network

	delete network

Routers and interface: [https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers]

	create router

	update router

	delete router

	add interface to router

Subnets: [https://docs.openstack.org/api-ref/network/v2/index.html#subnets]

	create subnet

	update subnet

	delete subnet

Servers: [https://docs.openstack.org/api-ref/compute/]

	create keypair

	create server

	delete server

	add/assign floating IP

	disassociate floating IP

Ports: [https://docs.openstack.org/api-ref/network/v2/index.html#ports]

	create port

	update port

	delete port

Floating IPs: [https://docs.openstack.org/api-ref/network/v2/index.html#floating-ips-floatingips]

	create floating IP

	delete floating IP

8.1.5.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.5.4. Test Area Structure

The test area is structured in individual tests as listed below.
For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

All these test cases are included in the test case functest.tempest.compute of
OVP test suite.

8.1.5.5. Test Area Structure

The test area is structured in individual tests as listed below.
For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

	
	Flavor V2 test [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/compute/flavors/test_flavors.py#L20]
	
	tempest.api.compute.flavors.test_flavors.FlavorsV2TestJSON.test_get_flavor

	tempest.api.compute.flavors.test_flavors.FlavorsV2TestJSON.test_list_flavors

	
	Security Group Rules test [https://github.com/openstack/tempest/blob/master/tempest/api/compute/security_groups/test_security_group_rules.py#L20]
	
	tempest.api.compute.security_groups.test_security_group_rules.SecurityGroupRulesTestJSON.test_security_group_rules_create

	tempest.api.compute.security_groups.test_security_group_rules.SecurityGroupRulesTestJSON.test_security_group_rules_list

	
	Security Groups test [https://github.com/openstack/tempest/blob/master/tempest/api/compute/security_groups/test_security_groups.py#L23]
	
	tempest.api.compute.security_groups.test_security_groups.SecurityGroupsTestJSON.test_security_groups_create_list_delete

	
	Attach Interfaces test [https://github.com/openstack/tempest/blob/master/tempest/api/compute/servers/test_attach_interfaces.py#L347]
	
	tempest.api.compute.servers.test_attach_interfaces.AttachInterfacesUnderV243Test.test_add_remove_fixed_ip

	
	Server Addresses test [https://github.com/openstack/tempest/blob/master/tempest/api/compute/servers/test_server_addresses.py#L21]
	
	tempest.api.compute.servers.test_server_addresses.ServerAddressesTestJSON.test_list_server_addresses

	tempest.api.compute.servers.test_server_addresses.ServerAddressesTestJSON.test_list_server_addresses_by_network

	
	Test Versions [https://github.com/openstack/tempest/blob/master/tempest/api/compute/test_versions.py#L19]
	
	tempest.api.compute.test_versions.TestVersions.test_get_version_details

	
	Servers Test Boot From Volume [https://github.com/openstack/tempest/blob/master/tempest/api/compute/servers/test_create_server.py#L158]
	
	tempest.api.compute.servers.test_create_server.ServersTestBootFromVolume.test_verify_server_details

	tempest.api.compute.servers.test_create_server.ServersTestBootFromVolume.test_list_servers

	
	Server Basic Operations test [https://github.com/openstack/tempest/blob/master/tempest/scenario/test_server_basic_ops.py#L30]
	
	tempest.scenario.test_server_basic_ops.TestServerBasicOps.test_server_basic_ops

8.1.6. Tempest Identity v3 test specification

8.1.6.1. Scope

The Tempest Identity v3 test area evaluates the ability of the System Under Test
(SUT) to create, list, delete and verify users through the life of a VNF.
The tests in this test area will evaluate IPv4 network runtime operations
functionality.

These runtime operations may include that create, list, verify and delete:

	credentials

	domains

	endpoints

	user groups

	policies

	regions

	roles

	services

	identities

	API versions

8.1.6.2. References

Identity API v3.0 [https://docs.openstack.org/api-ref/identity/v3/index.html]

8.1.6.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.6.4. Test Area Structure

The test area is structured in individual tests as listed below.
For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

All these test cases are included in the test case functest.tempest.identity_v3 of
OVP test suite.

	
	Create, Get, Update and Delete Credentials [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_credentials.py#L21]
	
	tempest.api.identity.admin.v3.test_credentials.CredentialsTestJSON.test_credentials_create_get_update_delete

	
	Create and Verify Domain [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_domains.py#L159]
	
	tempest.api.identity.v3.test_domains.DefaultDomainTestJSON.test_default_domain_exists

	
	Create, Update and Delete Domain [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_domains.py]
	
	tempest.api.identity.admin.v3.test_domains.DomainsTestJSON.test_create_update_delete_domain

	
	Create and Update endpoint [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_endpoints.py]
	
	tempest.api.identity.admin.v3.test_endpoints.EndPointsTestJSON.test_update_endpoint

	
	Create, List and Delete Group Users [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_groups.py]
	
	tempest.api.identity.admin.v3.test_groups.GroupsV3TestJSON.test_group_users_add_list_delete

	
	Update Policy [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_policies.py]
	
	tempest.api.identity.admin.v3.test_policies.PoliciesTestJSON.test_create_update_delete_policy

	
	Create a Region with a Specific Id [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_regions.py]
	
	tempest.api.identity.admin.v3.test_regions.RegionsTestJSON.test_create_region_with_specific_id

	
	Create, Update and Show Role List [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_roles.py]
	
	tempest.api.identity.admin.v3.test_roles.RolesV3TestJSON.test_role_create_update_show_list

	
	Create a Service [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_services.py]
	
	tempest.api.identity.admin.v3.test_services.ServicesTestJSON.test_create_update_get_service

	
	Create and List Trusts [https://github.com/openstack/tempest/blob/12.2.0/tempest/api/identity/admin/v3/test_trusts.py#L193]
	
	tempest.api.identity.admin.v3.test_trusts.TrustsV3TestJSON.test_get_trusts_all

	
	List API Versions [https://github.com/openstack/tempest/blob/18.0.0/tempest/api/identity/v3/test_api_discovery.py]
	
	tempest.api.identity.v3.test_api_discovery.TestApiDiscovery.test_list_api_versions

8.1.7. Tempest Image test specification

8.1.7.1. Scope

The Tempest Image test area tests the basic operations of Images of the System Under
Test (SUT) through the life of a VNF. The tests in this test area will evaluate IPv4
network runtime operations functionality.

8.1.7.2. References

Image Service API v2 [https://docs.openstack.org/api-ref/image/v2/index.html]

8.1.7.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.7.4. Test Area Structure

The test area is structured in individual tests as listed below.
For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

All these test cases are included in the test case functest.tempest.image of
OVP test suite.

	
	Register, Upload, Get Image and Get Image File API’s [https://github.com/openstack/tempest/blob/18.0.0/tempest/api/image/v2/test_images.py#L32]
	
	tempest.api.image.v2.test_images.BasicOperationsImagesTest.test_register_upload_get_image_file

	
	List Versions [https://github.com/openstack/tempest/blob/18.0.0/tempest/api/image/v2/test_versions.py]
	
	tempest.api.image.v2.test_versions.VersionsTest.test_list_versions

8.1.8. IPv6 test specification

8.1.8.1. Scope

The IPv6 test area will evaluate the ability for a SUT to support IPv6
Tenant Network features and functionality. The tests in this test area will
evaluate,

	network, subnet, port, router API CRUD operations

	interface add and remove operations

	security group and security group rule API CRUD operations

	IPv6 address assignment with dual stack, dual net, multiprefix in mode DHCPv6 stateless or SLAAC

8.1.8.2. References

	upstream openstack API reference

	https://docs.openstack.org/api-ref/

	upstream openstack IPv6 reference

	https://docs.openstack.org/newton/networking-guide/config-ipv6.html

8.1.8.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	CIDR - Classless Inter-Domain Routing

	CRUD - Create, Read, Update, and Delete

	DHCP - Dynamic Host Configuration Protocol

	DHCPv6 - Dynamic Host Configuration Protocol version 6

	ICMP - Internet Control Message Protocol

	NFVI - Network Functions Virtualization Infrastructure

	NIC - Network Interface Controller

	RA - Router Advertisements

	radvd - The Router Advertisement Daemon

	SDN - Software Defined Network

	SLAAC - Stateless Address Auto Configuration

	TCP - Transmission Control Protocol

	UDP - User Datagram Protocol

	VM - Virtual Machine

	vNIC - virtual Network Interface Card

8.1.8.4. System Under Test (SUT)

The system under test is assumed to be the NFVI and VIM deployed with a Pharos compliant infrastructure.

8.1.8.5. Test Area Structure

The test area is structured based on network, port and subnet operations. Each test case
is able to run independently, i.e. irrelevant of the state created by a previous test.

8.1.8.6. Test Descriptions

8.1.8.6.1. API Used and Reference

Networks: https://docs.openstack.org/api-ref/network/v2/index.html#networks

	show network details

	update network

	delete network

	list networks

	create netowrk

	bulk create networks

Subnets: https://docs.openstack.org/api-ref/network/v2/index.html#subnets

	list subnets

	create subnet

	bulk create subnet

	show subnet details

	update subnet

	delete subnet

Routers and interface: https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers

	list routers

	create router

	show router details

	update router

	delete router

	add interface to router

	remove interface from router

Ports: https://docs.openstack.org/api-ref/network/v2/index.html#ports

	show port details

	update port

	delete port

	list port

	create port

	bulk create ports

Security groups: https://docs.openstack.org/api-ref/network/v2/index.html#security-groups-security-groups

	list security groups

	create security groups

	show security group

	update security group

	delete security group

Security groups rules: https://docs.openstack.org/api-ref/network/v2/index.html#security-group-rules-security-group-rules

	list security group rules

	create security group rule

	show security group rule

	delete security group rule

Servers: https://docs.openstack.org/api-ref/compute/

	list servers

	create server

	create multiple servers

	list servers detailed

	show server details

	update server

	delete server

All IPv6 api and scenario test cases addressed in OVP are covered in the
following test specification documents.

	8.1.8.6.1.1. Test Case 1 - Create and Delete Bulk Network, IPv6 Subnet and Port
	8.1.8.6.1.1.1. Short name

	8.1.8.6.1.1.2. Use case specification

	8.1.8.6.1.1.3. Test preconditions

	8.1.8.6.1.1.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.1.5. Post conditions

	8.1.8.6.1.2. Test Case 2 - Create, Update and Delete an IPv6 Network and Subnet
	8.1.8.6.1.2.1. Short name

	8.1.8.6.1.2.2. Use case specification

	8.1.8.6.1.2.3. Test preconditions

	8.1.8.6.1.2.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.2.5. Post conditions

	8.1.8.6.1.3. Test Case 3 - Check External Network Visibility
	8.1.8.6.1.3.1. Short name

	8.1.8.6.1.3.2. Use case specification

	8.1.8.6.1.3.3. Test preconditions

	8.1.8.6.1.3.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.3.5. Post conditions

	8.1.8.6.1.4. Test Case 4 - List IPv6 Networks and Subnets
	8.1.8.6.1.4.1. Short name

	8.1.8.6.1.4.2. Use case specification

	8.1.8.6.1.4.3. Test preconditions

	8.1.8.6.1.4.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.4.5. Post conditions

	8.1.8.6.1.5. Test Case 5 - Show Details of an IPv6 Network and Subnet
	8.1.8.6.1.5.1. Short name

	8.1.8.6.1.5.2. Use case specification

	8.1.8.6.1.5.3. Test preconditions

	8.1.8.6.1.5.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.5.5. Post conditions

	8.1.8.6.1.6. Test Case 6 - Create an IPv6 Port in Allowed Allocation Pools
	8.1.8.6.1.6.1. Short name

	8.1.8.6.1.6.2. Use case specification

	8.1.8.6.1.6.3. Test preconditions

	8.1.8.6.1.6.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.6.5. Post conditions

	8.1.8.6.1.7. Test Case 7 - Create an IPv6 Port with Empty Security Groups
	8.1.8.6.1.7.1. Short name

	8.1.8.6.1.7.2. Use case specification

	8.1.8.6.1.7.3. Test preconditions

	8.1.8.6.1.7.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.7.5. Post conditions

	8.1.8.6.1.8. Test Case 8 - Create, Update and Delete an IPv6 Port
	8.1.8.6.1.8.1. Short name

	8.1.8.6.1.8.2. Use case specification

	8.1.8.6.1.8.3. Test preconditions

	8.1.8.6.1.8.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.8.5. Post conditions

	8.1.8.6.1.9. Test Case 9 - List IPv6 Ports
	8.1.8.6.1.9.1. Short name

	8.1.8.6.1.9.2. Use case specification

	8.1.8.6.1.9.3. Test preconditions

	8.1.8.6.1.9.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.9.5. Post conditions

	8.1.8.6.1.10. Test Case 10 - Show Key/Valus Details of an IPv6 Port
	8.1.8.6.1.10.1. Short name

	8.1.8.6.1.10.2. Use case specification

	8.1.8.6.1.10.3. Test preconditions

	8.1.8.6.1.10.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.10.5. Post conditions

	8.1.8.6.1.11. Test Case 11 - Add Multiple Interfaces for an IPv6 Router
	8.1.8.6.1.11.1. Short name

	8.1.8.6.1.11.2. Use case specification

	8.1.8.6.1.11.3. Test preconditions

	8.1.8.6.1.11.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.11.5. Post conditions

	8.1.8.6.1.12. Test Case 12 - Add and Remove an IPv6 Router Interface with port_id
	8.1.8.6.1.12.1. Short name

	8.1.8.6.1.12.2. Use case specification

	8.1.8.6.1.12.3. Test preconditions

	8.1.8.6.1.12.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.12.5. Post conditions

	8.1.8.6.1.13. Test Case 13 - Add and Remove an IPv6 Router Interface with subnet_id
	8.1.8.6.1.13.1. Short name

	8.1.8.6.1.13.2. Use case specification

	8.1.8.6.1.13.3. Test preconditions

	8.1.8.6.1.13.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.13.5. Post conditions

	8.1.8.6.1.14. Test Case 14 - Create, Show, List, Update and Delete an IPv6 router
	8.1.8.6.1.14.1. Short name

	8.1.8.6.1.14.2. Use case specification

	8.1.8.6.1.14.3. Test preconditions

	8.1.8.6.1.14.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.14.5. Post conditions

	8.1.8.6.1.15. Test Case 15 - Create, List, Update, Show and Delete an IPv6 security group
	8.1.8.6.1.15.1. Short name

	8.1.8.6.1.15.2. Use case specification

	8.1.8.6.1.15.3. Test preconditions

	8.1.8.6.1.15.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.15.5. Post conditions

	8.1.8.6.1.16. Test Case 16 - Create, Show and Delete IPv6 security group rule
	8.1.8.6.1.16.1. Short name

	8.1.8.6.1.16.2. Use case specification

	8.1.8.6.1.16.3. Test preconditions

	8.1.8.6.1.16.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.16.5. Post conditions

	8.1.8.6.1.17. Test Case 17 - List IPv6 Security Groups
	8.1.8.6.1.17.1. Short name

	8.1.8.6.1.17.2. Use case specification

	8.1.8.6.1.17.3. Test preconditions

	8.1.8.6.1.17.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.17.5. Post conditions

	8.1.8.6.1.18. Test Case 1 - IPv6 Address Assignment - Dual Stack, SLAAC, DHCPv6 Stateless
	8.1.8.6.1.18.1. Short name

	8.1.8.6.1.18.2. Use case specification

	8.1.8.6.1.18.3. Test preconditions

	8.1.8.6.1.18.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.18.5. Post conditions

	8.1.8.6.1.19. Test Case 2 - IPv6 Address Assignment - Dual Net, Dual Stack, SLAAC, DHCPv6 Stateless
	8.1.8.6.1.19.1. Short name

	8.1.8.6.1.19.2. Use case specification

	8.1.8.6.1.19.3. Test preconditions

	8.1.8.6.1.19.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.19.5. Post conditions

	8.1.8.6.1.20. Test Case 3 - IPv6 Address Assignment - Multiple Prefixes, Dual Stack, SLAAC, DHCPv6 Stateless
	8.1.8.6.1.20.1. Short name

	8.1.8.6.1.20.2. Use case specification

	8.1.8.6.1.20.3. Test preconditions

	8.1.8.6.1.20.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.20.5. Post conditions

	8.1.8.6.1.21. Test Case 4 - IPv6 Address Assignment - Dual Net, Multiple Prefixes, Dual Stack, SLAAC, DHCPv6 Stateless
	8.1.8.6.1.21.1. Short name

	8.1.8.6.1.21.2. Use case specification

	8.1.8.6.1.21.3. Test preconditions

	8.1.8.6.1.21.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.21.5. Post conditions

	8.1.8.6.1.22. Test Case 5 - IPv6 Address Assignment - Dual Stack, SLAAC
	8.1.8.6.1.22.1. Short name

	8.1.8.6.1.22.2. Use case specification

	8.1.8.6.1.22.3. Test preconditions

	8.1.8.6.1.22.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.22.5. Post conditions

	8.1.8.6.1.23. Test Case 6 - IPv6 Address Assignment - Dual Net, Dual Stack, SLAAC
	8.1.8.6.1.23.1. Short name

	8.1.8.6.1.23.2. Use case specification

	8.1.8.6.1.23.3. Test preconditions

	8.1.8.6.1.23.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.23.5. Post conditions

	8.1.8.6.1.24. Test Case 7 - IPv6 Address Assignment - Multiple Prefixes, Dual Stack, SLAAC
	8.1.8.6.1.24.1. Short name

	8.1.8.6.1.24.2. Use case specification

	8.1.8.6.1.24.3. Test preconditions

	8.1.8.6.1.24.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.24.5. Post conditions

	8.1.8.6.1.25. Test Case 8 - IPv6 Address Assignment - Dual Net, Dual Stack, Multiple Prefixes, SLAAC
	8.1.8.6.1.25.1. Short name

	8.1.8.6.1.25.2. Use case specification

	8.1.8.6.1.25.3. Test preconditions

	8.1.8.6.1.25.4. Basic test flow execution description and pass/fail criteria

	8.1.8.6.1.25.5. Post conditions

8.1.8.6.1.1. Test Case 1 - Create and Delete Bulk Network, IPv6 Subnet and Port

8.1.8.6.1.1.1. Short name

functest.tempest.ipv6_api.bulk_network_subnet_port_create_delete

8.1.8.6.1.1.2. Use case specification

This test case evaluates the SUT API ability of creating and deleting multiple networks,
IPv6 subnets, ports in one request, the reference is,

tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_network
tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_subnet
tempest.api.network.test_networks.BulkNetworkOpsIpV6Test.test_bulk_create_delete_port

8.1.8.6.1.1.3. Test preconditions

None

8.1.8.6.1.1.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.1.4.1. Test execution

	Test action 1: Create 2 networks using bulk create, storing the “id” parameters returned in the response

	Test action 2: List all networks, verifying the two network id’s are found in the list

	Test assertion 1: The two “id” parameters are found in the network list

	Test action 3: Delete the 2 created networks using the stored network ids

	Test action 4: List all networks, verifying the network ids are no longer present

	Test assertion 2: The two “id” parameters are not present in the network list

	Test action 5: Create 2 networks using bulk create, storing the “id” parameters returned in the response

	Test action 6: Create an IPv6 subnets on each of the two networks using bulk create commands,
storing the associated “id” parameters

	Test action 7: List all subnets, verify the IPv6 subnets are found in the list

	Test assertion 3: The two IPv6 subnet “id” parameters are found in the network list

	Test action 8: Delete the 2 IPv6 subnets using the stored “id” parameters

	Test action 9: List all subnets, verify the IPv6 subnets are no longer present in the list

	Test assertion 4: The two IPv6 subnet “id” parameters, are not present in list

	Test action 10: Delete the 2 networks created in test action 5, using the stored network ids

	Test action 11: List all networks, verifying the network ids are no longer present

	Test assertion 5: The two “id” parameters are not present in the network list

	Test action 12: Create 2 networks using bulk create, storing the “id” parameters returned in the response

	Test action 13: Create a port on each of the two networks using bulk create commands,
storing the associated “port_id” parameters

	Test action 14: List all ports, verify the port_ids are found in the list

	Test assertion 6: The two “port_id” parameters are found in the ports list

	Test action 15: Delete the 2 ports using the stored “port_id” parameters

	Test action 16: List all ports, verify port_ids are no longer present in the list

	Test assertion 7: The two “port_id” parameters, are not present in list

	Test action 17: Delete the 2 networks created in test action 12, using the stored network ids

	Test action 18: List all networks, verifying the network ids are no longer present

	Test assertion 8: The two “id” parameters are not present in the network list

8.1.8.6.1.1.4.2. Pass / Fail criteria

This test evaluates the ability to use bulk create commands to create networks, IPv6 subnets and ports on
the SUT API. Specifically it verifies that:

	Bulk network create commands return valid “id” parameters which are reported in the list commands

	Bulk IPv6 subnet commands return valid “id” parameters which are reported in the list commands

	Bulk port commands return valid “port_id” parameters which are reported in the list commands

	All items created using bulk create commands are able to be removed using the returned identifiers

8.1.8.6.1.1.5. Post conditions

N/A

8.1.8.6.1.2. Test Case 2 - Create, Update and Delete an IPv6 Network and Subnet

8.1.8.6.1.2.1. Short name

functest.tempest.ipv6_api.network_subnet_create_update_delete

8.1.8.6.1.2.2. Use case specification

This test case evaluates the SUT API ability of creating, updating, deleting
network and IPv6 subnet with the network, the reference is

tempest.api.network.test_networks.NetworksIpV6Test.test_create_update_delete_network_subnet

8.1.8.6.1.2.3. Test preconditions

None

8.1.8.6.1.2.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.2.4.1. Test execution

	Test action 1: Create a network, storing the “id” and “status” parameters returned
in the response

	Test action 2: Verify the value of the created network’s “status” is ACTIVE

	Test assertion 1: The created network’s “status” is ACTIVE

	Test action 3: Update this network with a new_name

	Test action 4: Verify the network’s name equals the new_name

	Test assertion 2: The network’s name equals to the new_name after name updating

	Test action 5: Create an IPv6 subnet within the network, storing the “id” parameters
returned in the response

	Test action 6: Update this IPv6 subnet with a new_name

	Test action 7: Verify the IPv6 subnet’s name equals the new_name

	Test assertion 3: The IPv6 subnet’s name equals to the new_name after name updating

	Test action 8: Delete the IPv6 subnet created in test action 5, using the stored subnet id

	Test action 9: List all subnets, verifying the subnet id is no longer present

	Test assertion 4: The IPv6 subnet “id” is not present in the subnet list

	Test action 10: Delete the network created in test action 1, using the stored network id

	Test action 11: List all networks, verifying the network id is no longer present

	Test assertion 5: The network “id” is not present in the network list

8.1.8.6.1.2.4.2. Pass / Fail criteria

This test evaluates the ability to create, update, delete network, IPv6 subnet on the
SUT API. Specifically it verifies that:

	Create network commands return ACTIVE “status” parameters which are reported in the list commands

	Update network commands return updated “name” parameters which equals to the “name” used

	Update subnet commands return updated “name” parameters which equals to the “name” used

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.2.5. Post conditions

None

8.1.8.6.1.3. Test Case 3 - Check External Network Visibility

8.1.8.6.1.3.1. Short name

functest.tempest.ipv6_api.external_network_visibility

8.1.8.6.1.3.2. Use case specification

This test case verifies user can see external networks but not subnets, the reference is,

tempest.api.network.test_networks.NetworksIpV6Test.test_external_network_visibility

8.1.8.6.1.3.3. Test preconditions

	The SUT has at least one external network.

	In the external network list, there is no network without external router,
i.e., all networks in this list are with external router.

	There is one external network with configured public network id and there is
no subnet on this network

8.1.8.6.1.3.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.3.4.1. Test execution

	Test action 1: List all networks with external router, storing the “id”s parameters returned in the response

	Test action 2: Verify list in test action 1 is not empty

	Test assertion 1: The network with external router list is not empty

	Test action 3: List all netowrks without external router in test action 1 list

	Test action 4: Verify list in test action 3 is empty

	Test assertion 2: networks without external router in the external network
list is empty

	Test action 5: Verify the configured public network id is found in test action 1 stored “id”s

	Test assertion 3: the public network id is found in the external network “id”s

	Test action 6: List the subnets of the external network with the configured
public network id

	Test action 7: Verify list in test action 6 is empty

	Test assertion 4: There is no subnet of the external network with the configured
public network id

8.1.8.6.1.3.4.2. Pass / Fail criteria

This test evaluates the ability to use list commands to list external networks, pre-configured
public network. Specifically it verifies that:

	Network list commands to find visible networks with external router

	Network list commands to find visible network with pre-configured public network id

	Subnet list commands to find no subnet on the pre-configured public network

8.1.8.6.1.3.5. Post conditions

None

8.1.8.6.1.4. Test Case 4 - List IPv6 Networks and Subnets

8.1.8.6.1.4.1. Short name

functest.tempest.ipv6_api.network_subnet_list

8.1.8.6.1.4.2. Use case specification

This test case evaluates the SUT API ability of listing netowrks,
subnets after creating a network and an IPv6 subnet, the reference is

tempest.api.network.test_networks.NetworksIpV6Test.test_list_networks
tempest.api.network.test_networks.NetworksIpV6Test.test_list_subnets

8.1.8.6.1.4.3. Test preconditions

None

8.1.8.6.1.4.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.4.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: List all networks, verifying the network id is found in the list

	Test assertion 1: The “id” parameter is found in the network list

	Test action 3: Create an IPv6 subnet of the network created in test action 1.
storing the “id” parameter returned in the response

	Test action 4: List all subnets of this network, verifying the IPv6 subnet id
is found in the list

	Test assertion 2: The “id” parameter is found in the IPv6 subnet list

	Test action 5: Delete the IPv6 subnet using the stored “id” parameters

	Test action 6: List all subnets, verify subnet_id is no longer present in the list

	Test assertion 3: The IPv6 subnet “id” parameter is not present in list

	Test action 7: Delete the network created in test action 1, using the stored network ids

	Test action 8: List all networks, verifying the network id is no longer present

	Test assertion 4: The network “id” parameter is not present in the network list

8.1.8.6.1.4.4.2. Pass / Fail criteria

This test evaluates the ability to use create commands to create network, IPv6 subnet, list
commands to list the created networks, IPv6 subnet on the SUT API. Specifically it verifies that:

	Create commands to create network, IPv6 subnet

	List commands to find that netowrk, IPv6 subnet in the all networks, subnets list after creating

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.4.5. Post conditions

None

8.1.8.6.1.5. Test Case 5 - Show Details of an IPv6 Network and Subnet

8.1.8.6.1.5.1. Short name

functest.tempest.ipv6_api.network_subnet_show

8.1.8.6.1.5.2. Use case specification

This test case evaluates the SUT API ability of showing the network, subnet
details, the reference is,

tempest.api.network.test_networks.NetworksIpV6Test.test_show_network
tempest.api.network.test_networks.NetworksIpV6Test.test_show_subnet

8.1.8.6.1.5.3. Test preconditions

None

8.1.8.6.1.5.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.5.4.1. Test execution

	Test action 1: Create a network, storing the “id” and “name” parameter returned in the response

	Test action 2: Show the network id and name, verifying the network id and name equal to the
“id” and “name” stored in test action 1

	Test assertion 1: The id and name equal to the “id” and “name” stored in test action 1

	Test action 3: Create an IPv6 subnet of the network, storing the “id” and CIDR parameter
returned in the response

	Test action 4: Show the details of the created IPv6 subnet, verifying the
id and CIDR in the details are equal to the stored id and CIDR in test action 3.

	Test assertion 2: The “id” and CIDR in show details equal to “id” and CIDR stored in test action 3

	Test action 5: Delete the IPv6 subnet using the stored “id” parameter

	Test action 6: List all subnets on the network, verify the IPv6 subnet id is no longer present in the list

	Test assertion 3: The IPv6 subnet “id” parameter is not present in list

	Test action 7: Delete the network created in test action 1, using the stored network id

	Test action 8: List all networks, verifying the network id is no longer present

	Test assertion 4: The “id” parameter is not present in the network list

8.1.8.6.1.5.4.2. Pass / Fail criteria

This test evaluates the ability to use create commands to create network, IPv6 subnet and show
commands to show network, IPv6 subnet details on the SUT API. Specifically it verifies that:

	Network show commands return correct “id” and “name” parameter which equal to the returned response in the create commands

	IPv6 subnet show commands return correct “id” and CIDR parameter which equal to the returned response in the create commands

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.5.5. Post conditions

None

8.1.8.6.1.6. Test Case 6 - Create an IPv6 Port in Allowed Allocation Pools

8.1.8.6.1.6.1. Short name

functest.tempest.ipv6_api.port_create_in_allocation_pool

8.1.8.6.1.6.2. Use case specification

This test case evaluates the SUT API ability of creating
an IPv6 subnet within allowed IPv6 address allocation pool and creating
a port whose address is in the range of the pool, the reference is,

tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_port_in_allowed_allocation_pools

8.1.8.6.1.6.3. Test preconditions

There should be an IPv6 CIDR configuration, which prefixlen is less than 126.

8.1.8.6.1.6.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.6.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Check the allocation pools configuration, verifying the prefixlen
of the IPv6 CIDR configuration is less than 126.

	Test assertion 1: The prefixlen of the IPv6 CIDR configuration is less than 126

	Test action 3: Get the allocation pool by setting the start_ip and end_ip
based on the IPv6 CIDR configuration.

	Test action 4: Create an IPv6 subnet of the network within the allocation pools,
storing the “id” parameter returned in the response

	Test action 5: Create a port of the network, storing the “id” parameter returned in the response

	Test action 6: Verify the port’s id is in the range of the allocation pools which is got is test action 3

	Test assertion 2: the port’s id is in the range of the allocation pools

	Test action 7: Delete the port using the stored “id” parameter

	Test action 8: List all ports, verify the port id is no longer present in the list

	Test assertion 3: The port “id” parameter is not present in list

	Test action 9: Delete the IPv6 subnet using the stored “id” parameter

	Test action 10: List all subnets on the network, verify the IPv6 subnet id is no longer present in the list

	Test assertion 4: The IPv6 subnet “id” parameter is not present in list

	Test action 11: Delete the network created in test action 1, using the stored network id

	Test action 12: List all networks, verifying the network id is no longer present

	Test assertion 5: The “id” parameter is not present in the network list

8.1.8.6.1.6.4.2. Pass / Fail criteria

This test evaluates the ability to use create commands to create an IPv6 subnet within allowed
IPv6 address allocation pool and create a port whose address is in the range of the pool. Specifically it verifies that:

	IPv6 subnet create command to create an IPv6 subnet within allowed IPv6 address allocation pool

	Port create command to create a port whose id is in the range of the allocation pools

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.6.5. Post conditions

None

8.1.8.6.1.7. Test Case 7 - Create an IPv6 Port with Empty Security Groups

8.1.8.6.1.7.1. Short name

functest.tempest.ipv6_api.port_create_empty_security_group

8.1.8.6.1.7.2. Use case specification

This test case evaluates the SUT API ability of creating port with empty
security group, the reference is,

tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_port_with_no_securitygroups

8.1.8.6.1.7.3. Test preconditions

None

8.1.8.6.1.7.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.7.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Create an IPv6 subnet of the network, storing the “id” parameter returned in the response

	Test action 3: Create a port of the network with an empty security group, storing the “id” parameter returned in the response

	Test action 4: Verify the security group of the port is not none but is empty

	Test assertion 1: the security group of the port is not none but is empty

	Test action 5: Delete the port using the stored “id” parameter

	Test action 6: List all ports, verify the port id is no longer present in the list

	Test assertion 2: The port “id” parameter is not present in list

	Test action 7: Delete the IPv6 subnet using the stored “id” parameter

	Test action 8: List all subnets on the network, verify the IPv6 subnet id is no longer present in the list

	Test assertion 3: The IPv6 subnet “id” parameter is not present in list

	Test action 9: Delete the network created in test action 1, using the stored network id

	Test action 10: List all networks, verifying the network id is no longer present

	Test assertion 4: The “id” parameter is not present in the network list

8.1.8.6.1.7.4.2. Pass / Fail criteria

This test evaluates the ability to use create commands to create port with
empty security group of the SUT API. Specifically it verifies that:

	Port create commands to create a port with an empty security group

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.7.5. Post conditions

None

8.1.8.6.1.8. Test Case 8 - Create, Update and Delete an IPv6 Port

8.1.8.6.1.8.1. Short name

functest.tempest.ipv6_api.port_create_update_delete

8.1.8.6.1.8.2. Use case specification

This test case evaluates the SUT API ability of creating, updating,
deleting IPv6 port, the reference is,

tempest.api.network.test_ports.PortsIpV6TestJSON.test_create_update_delete_port

8.1.8.6.1.8.3. Test preconditions

None

8.1.8.6.1.8.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.8.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Create a port of the network, storing the “id” and “admin_state_up” parameters
returned in the response

	Test action 3: Verify the value of port’s ‘admin_state_up’ is True

	Test assertion 1: the value of port’s ‘admin_state_up’ is True after creating

	Test action 4: Update the port’s name with a new_name and set port’s admin_state_up to False,
storing the name and admin_state_up parameters returned in the response

	Test action 5: Verify the stored port’s name equals to new_name and the port’s admin_state_up is False.

	Test assertion 2: the stored port’s name equals to new_name and the port’s admin_state_up is False

	Test action 6: Delete the port using the stored “id” parameter

	Test action 7: List all ports, verify the port is no longer present in the list

	Test assertion 3: The port “id” parameter is not present in list

	Test action 8: Delete the network created in test action 1, using the stored network id

	Test action 9: List all networks, verifying the network id is no longer present

	Test assertion 4: The “id” parameter is not present in the network list

8.1.8.6.1.8.4.2. Pass / Fail criteria

This test evaluates the ability to use create/update/delete commands to create/update/delete port
of the SUT API. Specifically it verifies that:

	Port create commands return True of ‘admin_state_up’ in response

	Port update commands to update ‘name’ to new_name and ‘admin_state_up’ to false

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.8.5. Post conditions

None

8.1.8.6.1.9. Test Case 9 - List IPv6 Ports

8.1.8.6.1.9.1. Short name

functest.tempest.ipv6_api.port_list

8.1.8.6.1.9.2. Use case specification

This test case evaluates the SUT ability of creating a port on a network and
finding the port in the all ports list, the reference is,

tempest.api.network.test_ports.PortsIpV6TestJSON.test_list_ports

8.1.8.6.1.9.3. Test preconditions

None

8.1.8.6.1.9.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.9.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Create a port of the network, storing the “id” parameter returned in the response

	Test action 3: List all ports, verify the port id is found in the list

	Test assertion 1: The “id” parameter is found in the port list

	Test action 4: Delete the port using the stored “id” parameter

	Test action 5: List all ports, verify the port is no longer present in the list

	Test assertion 2: The port “id” parameter is not present in list

	Test action 6: Delete the network created in test action 1, using the stored network id

	Test action 7: List all networks, verifying the network id is no longer present

	Test assertion 3: The “id” parameter is not present in the network list

8.1.8.6.1.9.4.2. Pass / Fail criteria

This test evaluates the ability to use list commands to list the networks and ports on
the SUT API. Specifically it verifies that:

	Port list command to list all ports, the created port is found in the list.

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.9.5. Post conditions

None

8.1.8.6.1.10. Test Case 10 - Show Key/Valus Details of an IPv6 Port

8.1.8.6.1.10.1. Short name

functest.tempest.ipv6_api.port_show_details

8.1.8.6.1.10.2. Use case specification

This test case evaluates the SUT ability of showing the port
details, the values in the details should be equal to the values to create the port,
the reference is,

tempest.api.network.test_ports.PortsIpV6TestJSON.test_show_port

8.1.8.6.1.10.3. Test preconditions

None

8.1.8.6.1.10.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.10.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Create a port of the network, storing the “id” parameter returned in the response

	Test action 3: Show the details of the port, verify the stored port’s id
in test action 2 exists in the details

	Test assertion 1: The “id” parameter is found in the port shown details

	Test action 4: Verify the values in the details of the port are the same as the values
to create the port

	Test assertion 2: The values in the details of the port are the same as the values
to create the port

	Test action 5: Delete the port using the stored “id” parameter

	Test action 6: List all ports, verify the port is no longer present in the list

	Test assertion 3: The port “id” parameter is not present in list

	Test action 7: Delete the network created in test action 1, using the stored network id

	Test action 8: List all networks, verifying the network id is no longer present

	Test assertion 4: The “id” parameter is not present in the network list

8.1.8.6.1.10.4.2. Pass / Fail criteria

This test evaluates the ability to use show commands to show port details on the SUT API.
Specifically it verifies that:

	Port show commands to show the details of the port, whose id is in the details

	Port show commands to show the details of the port, whose values are the same as the values
to create the port

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.10.5. Post conditions

None

8.1.8.6.1.11. Test Case 11 - Add Multiple Interfaces for an IPv6 Router

8.1.8.6.1.11.1. Short name

functest.tempest.ipv6_api.router_add_multiple_interface

8.1.8.6.1.11.2. Use case specification

This test case evaluates the SUT ability of adding multiple interface
to a router, the reference is,

tempest.api.network.test_routers.RoutersIpV6Test.test_add_multiple_router_interfaces

8.1.8.6.1.11.3. Test preconditions

None

8.1.8.6.1.11.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.11.4.1. Test execution

	Test action 1: Create 2 networks named network01 and network02 sequentially,
storing the “id” parameters returned in the response

	Test action 2: Create an IPv6 subnet01 in network01, an IPv6 subnet02 in network02 sequentially,
storing the “id” parameters returned in the response

	Test action 3: Create a router, storing the “id” parameter returned in the response

	Test action 4: Create interface01 with subnet01 and the router

	Test action 5: Verify the router_id stored in test action 3 equals to the interface01’s ‘device_id’
and subnet01_id stored in test action 2 equals to the interface01’s ‘subnet_id’

	Test assertion 1: the router_id equals to the interface01’s ‘device_id’
and subnet01_id equals to the interface01’s ‘subnet_id’

	Test action 5: Create interface02 with subnet02 and the router

	Test action 6: Verify the router_id stored in test action 3 equals to the interface02’s ‘device_id’
and subnet02_id stored in test action 2 equals to the interface02’s ‘subnet_id’

	Test assertion 2: the router_id equals to the interface02’s ‘device_id’
and subnet02_id equals to the interface02’s ‘subnet_id’

	Test action 7: Delete the interfaces, router, IPv6 subnets and networks, networks, subnets, then list
all interfaces, ports, IPv6 subnets, networks, the test passes if the deleted ones
are not found in the list.

	Test assertion 3: The interfaces, router, IPv6 subnets and networks ids are not present in the lists
after deleting

8.1.8.6.1.11.4.2. Pass / Fail criteria

This test evaluates the ability to use bulk create commands to create networks, IPv6 subnets and ports on
the SUT API. Specifically it verifies that:

	Interface create commands to create interface with IPv6 subnet and router, interface ‘device_id’ and
‘subnet_id’ should equal to the router id and IPv6 subnet id, respectively.

	Interface create commands to create multiple interface with the same router and multiple IPv6 subnets.

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.11.5. Post conditions

None

8.1.8.6.1.12. Test Case 12 - Add and Remove an IPv6 Router Interface with port_id

8.1.8.6.1.12.1. Short name

functest.tempest.ipv6_api.router_interface_add_remove_with_port

8.1.8.6.1.12.2. Use case specification

This test case evaluates the SUT abiltiy of adding, removing router interface to
a port, the subnet_id and port_id of the interface will be checked,
the port’s device_id will be checked if equals to the router_id or not. The
reference is,

tempest.api.network.test_routers.RoutersIpV6Test.test_add_remove_router_interface_with_port_id

8.1.8.6.1.12.3. Test preconditions

None

8.1.8.6.1.12.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.12.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Create an IPv6 subnet of the network, storing the “id” parameter returned in the response

	Test action 3: Create a router, storing the “id” parameter returned in the response

	Test action 4: Create a port of the network, storing the “id” parameter returned in the response

	Test action 5: Add router interface to the port created, storing the “id” parameter returned in the response

	Test action 6: Verify the interface’s keys include ‘subnet_id’ and ‘port_id’

	Test assertion 1: the interface’s keys include ‘subnet_id’ and ‘port_id’

	Test action 7: Show the port details, verify the ‘device_id’ in port details equals to the router id stored
in test action 3

	Test assertion 2: ‘device_id’ in port details equals to the router id

	Test action 8: Delete the interface, port, router, subnet and network, then list
all interfaces, ports, routers, subnets and networks, the test passes if the deleted
ones are not found in the list.

	Test assertion 3: interfaces, ports, routers, subnets and networks are not found in the lists after deleting

8.1.8.6.1.12.4.2. Pass / Fail criteria

This test evaluates the ability to use add/remove commands to add/remove router interface to the port,
show commands to show port details on the SUT API. Specifically it verifies that:

	Router_interface add commands to add router interface to a port, the interface’s keys should include ‘subnet_id’ and ‘port_id’

	Port show commands to show ‘device_id’ in port details, which should be equal to the router id

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.12.5. Post conditions

None

8.1.8.6.1.13. Test Case 13 - Add and Remove an IPv6 Router Interface with subnet_id

8.1.8.6.1.13.1. Short name

functest.tempest.ipv6_api.router_interface_add_remove

8.1.8.6.1.13.2. Use case specification

This test case evaluates the SUT API ability of adding and removing a router interface with
the IPv6 subnet id, the reference is

tempest.api.network.test_routers.RoutersIpV6Test.test_add_remove_router_interface_with_subnet_id

8.1.8.6.1.13.3. Test preconditions

None

8.1.8.6.1.13.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.13.4.1. Test execution

	Test action 1: Create a network, storing the “id” parameter returned in the response

	Test action 2: Create an IPv6 subnet with the network created, storing the “id” parameter
returned in the response

	Test action 3: Create a router, storing the “id” parameter returned in the response

	Test action 4: Add a router interface with the stored ids of the router and IPv6 subnet

	Test assertion 1: Key ‘subnet_id’ is included in the added interface’s keys

	Test assertion 2: Key ‘port_id’ is included in the added interface’s keys

	Test action 5: Show the port info with the stored interface’s port id

	Test assertion 3:: The stored router id is equal to the device id shown in the port info

	Test action 6: Delete the router interface created in test action 4, using the stored subnet id

	Test action 7: List all router interfaces, verifying the router interface is no longer present

	Test assertion 4: The router interface with the stored subnet id is not present
in the router interface list

	Test action 8: Delete the router created in test action 3, using the stored router id

	Test action 9: List all routers, verifying the router id is no longer present

	Test assertion 5: The router “id” parameter is not present in the router list

	Test action 10: Delete the subnet created in test action 2, using the stored subnet id

	Test action 11: List all subnets, verifying the subnet id is no longer present

	Test assertion 6: The subnet “id” parameter is not present in the subnet list

	Test action 12: Delete the network created in test action 1, using the stored network id

	Test action 13: List all networks, verifying the network id is no longer present

	Test assertion 7: The network “id” parameter is not present in the network list

8.1.8.6.1.13.4.2. Pass / Fail criteria

This test evaluates the ability to add and remove router interface with the subnet id on the
SUT API. Specifically it verifies that:

	Router interface add command returns valid ‘subnet_id’ parameter which is reported
in the interface’s keys

	Router interface add command returns valid ‘port_id’ parameter which is reported
in the interface’s keys

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.13.5. Post conditions

None

8.1.8.6.1.14. Test Case 14 - Create, Show, List, Update and Delete an IPv6 router

8.1.8.6.1.14.1. Short name

functest.tempest.ipv6_api.router_create_show_list_update_delete

8.1.8.6.1.14.2. Use case specification

This test case evaluates the SUT API ability of creating, showing, listing, updating
and deleting routers, the reference is

tempest.api.network.test_routers.RoutersIpV6Test.test_create_show_list_update_delete_router

8.1.8.6.1.14.3. Test preconditions

There should exist an OpenStack external network.

8.1.8.6.1.14.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.14.4.1. Test execution

	Test action 1: Create a router, set the admin_state_up to be False and external_network_id
to be public network id, storing the “id” parameter returned in the response

	Test assertion 1: The created router’s admin_state_up is False

	Test assertion 2: The created router’s external network id equals to the public network id

	Test action 2: Show details of the router created in test action 1, using the stored router id

	Test assertion 3: The router’s name shown is the same as the router created

	Test assertion 4: The router’s external network id shown is the same as the public network id

	Test action 3: List all routers and verify if created router is in response message

	Test assertion 5: The stored router id is in the router list

	Test action 4: Update the name of router and verify if it is updated

	Test assertion 6: The name of router equals to the name used to update in test action 4

	Test action 5: Show the details of router, using the stored router id

	Test assertion 7: The router’s name shown equals to the name used to update in test action 4

	Test action 6: Delete the router created in test action 1, using the stored router id

	Test action 7: List all routers, verifying the router id is no longer present

	Test assertion 8: The “id” parameter is not present in the router list

8.1.8.6.1.14.4.2. Pass / Fail criteria

This test evaluates the ability to create, show, list, update and delete router on
the SUT API. Specifically it verifies that:

	Router create command returns valid “admin_state_up” and “id” parameters which equal to the
“admin_state_up” and “id” returned in the response

	Router show command returns valid “name” parameter which equals to the “name” returned in the response

	Router show command returns valid “external network id” parameters which equals to the public network id

	Router list command returns valid “id” parameter which equals to the stored router “id”

	Router update command returns updated “name” parameters which equals to the “name” used to update

	Router created using create command is able to be removed using the returned identifiers

8.1.8.6.1.14.5. Post conditions

None

8.1.8.6.1.15. Test Case 15 - Create, List, Update, Show and Delete an IPv6 security group

8.1.8.6.1.15.1. Short name

functest.tempest.ipv6_api.security_group_create_list_update_show_delete

8.1.8.6.1.15.2. Use case specification

This test case evaluates the SUT API ability of creating, listing, updating, showing
and deleting security groups, the reference is

tempest.api.network.test_security_groups.SecGroupIPv6Test.test_create_list_update_show_delete_security_group

8.1.8.6.1.15.3. Test preconditions

None

8.1.8.6.1.15.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.15.4.1. Test execution

	Test action 1: Create a security group, storing the “id” parameter returned in the response

	Test action 2: List all security groups and verify if created security group is there in response

	Test assertion 1: The created security group’s “id” is found in the list

	Test action 3: Update the name and description of this security group, using the stored id

	Test action 4: Verify if the security group’s name and description are updated

	Test assertion 2: The security group’s name equals to the name used in test action 3

	Test assertion 3: The security group’s description equals to the description used in test action 3

	Test action 5: Show details of the updated security group, using the stored id

	Test assertion 4: The security group’s name shown equals to the name used in test action 3

	Test assertion 5: The security group’s description shown equals to the description used in test action 3

	Test action 6: Delete the security group created in test action 1, using the stored id

	Test action 7: List all security groups, verifying the security group’s id is no longer present

	Test assertion 6: The “id” parameter is not present in the security group list

8.1.8.6.1.15.4.2. Pass / Fail criteria

This test evaluates the ability to create list, update, show and delete security group on
the SUT API. Specifically it verifies that:

	Security group create commands return valid “id” parameter which is reported in the list commands

	Security group update commands return valid “name” and “description” parameters which are
reported in the show commands

	Security group created using create command is able to be removed using the returned identifiers

8.1.8.6.1.15.5. Post conditions

None

8.1.8.6.1.16. Test Case 16 - Create, Show and Delete IPv6 security group rule

8.1.8.6.1.16.1. Short name

functest.tempest.ipv6_api.security_group_rule_create_show_delete

8.1.8.6.1.16.2. Use case specification

This test case evaluates the SUT API ability of creating, showing, listing and deleting
security group rules, the reference is

tempest.api.network.test_security_groups.SecGroupIPv6Test.test_create_show_delete_security_group_rule

8.1.8.6.1.16.3. Test preconditions

None

8.1.8.6.1.16.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.16.4.1. Test execution

	Test action 1: Create a security group, storing the “id” parameter returned in the response

	Test action 2: Create a rule of the security group with protocol tcp, udp and icmp, respectively,
using the stored security group’s id, storing the “id” parameter returned in the response

	Test action 3: Show details of the created security group rule, using the stored id of the
security group rule

	Test assertion 1: All the created security group rule’s values equal to the rule values
shown in test action 3

	Test action 4: List all security group rules

	Test assertion 2: The stored security group rule’s id is found in the list

	Test action 5: Delete the security group rule, using the stored security group rule’s id

	Test action 6: List all security group rules, verifying the security group rule’s id is no longer present

	Test assertion 3: The security group rule “id” parameter is not present in the list

	Test action 7: Delete the security group, using the stored security group’s id

	Test action 8: List all security groups, verifying the security group’s id is no longer present

	Test assertion 4: The security group “id” parameter is not present in the list

8.1.8.6.1.16.4.2. Pass / Fail criteria

This test evaluates the ability to create, show, list and delete security group rules on
the SUT API. Specifically it verifies that:

	Security group rule create command returns valid values which are reported in the show command

	Security group rule created using create command is able to be removed using the returned identifiers

8.1.8.6.1.16.5. Post conditions

None

8.1.8.6.1.17. Test Case 17 - List IPv6 Security Groups

8.1.8.6.1.17.1. Short name

functest.tempest.ipv6_api.security_group_list

8.1.8.6.1.17.2. Use case specification

This test case evaluates the SUT API ability of listing security groups, the reference is

tempest.api.network.test_security_groups.SecGroupIPv6Test.test_list_security_groups

8.1.8.6.1.17.3. Test preconditions

There should exist a default security group.

8.1.8.6.1.17.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.17.4.1. Test execution

	Test action 1: List all security groups

	Test action 2: Verify the default security group exists in the list, the test passes
if the default security group exists

	Test assertion 1: The default security group is in the list

8.1.8.6.1.17.4.2. Pass / Fail criteria

This test evaluates the ability to list security groups on the SUT API.
Specifically it verifies that:

	Security group list command return valid security groups which include the default security group

8.1.8.6.1.17.5. Post conditions

None

8.1.8.6.1.18. Test Case 1 - IPv6 Address Assignment - Dual Stack, SLAAC, DHCPv6 Stateless

8.1.8.6.1.18.1. Short name

functest.tempest.ipv6_scenario.dhcpv6_stateless

8.1.8.6.1.18.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’.
In this case, guest instance obtains IPv6 address from OpenStack managed radvd
using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
verifies the ping6 available VM can ping the other VM’s v4 and v6 addresses
as well as the v6 subnet’s gateway ip in the same network, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_dhcp6_stateless_from_os

8.1.8.6.1.18.3. Test preconditions

There should exist a public router or a public network.

8.1.8.6.1.18.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.18.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create one IPv6 subnet of the network created in test action 1 in
ipv6_ra_mode ‘dhcpv6_stateless’ and ipv6_address_mode ‘dhcpv6_stateless’,
storing the “id” parameter returned in the response

	Test action 6: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id

	Test action 7: Boot two VMs on this network, storing the “id” parameters returned in the response

	Test assertion 1: The vNIC of each VM gets one v4 address and one v6 address actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 address
as well as the v6 subnet’s gateway ip

	Test action 8: Delete the 2 VMs created in test action 7, using the stored ids

	Test action 9: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 11: Delete the IPv6 subnet created in test action 5, using the stored id

	Test action 12: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 13: Delete the network created in test action 1, using the stored id

	Test action 14: List all networks, verifying the id is no longer present

	Test assertion 6: The “id” parameter is not present in the network list

8.1.8.6.1.18.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode
‘dhcpv6_stateless’ and ipv6_address_mode ‘dhcpv6_stateless’,
and verify the ping6 available VM can ping the other VM’s v4 and v6 addresses as well as
the v6 subnet’s gateway ip in the same network. Specifically it verifies that:

	The IPv6 addresses in mode ‘dhcpv6_stateless’ assigned successfully

	The VM can ping the other VM’s IPv4 and IPv6 private addresses as well as the v6 subnet’s gateway ip

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.18.5. Post conditions

None

8.1.8.6.1.19. Test Case 2 - IPv6 Address Assignment - Dual Net, Dual Stack, SLAAC, DHCPv6 Stateless

8.1.8.6.1.19.1. Short name

functest.tempest.ipv6_scenario.dualnet_dhcpv6_stateless

8.1.8.6.1.19.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’.
In this case, guest instance obtains IPv6 address from OpenStack managed radvd
using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
verifies the ping6 available VM can ping the other VM’s v4 address in one network
and v6 address in another network as well as the v6 subnet’s gateway ip, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_dhcp6_stateless_from_os

8.1.8.6.1.19.3. Test preconditions

There should exists a public router or a public network.

8.1.8.6.1.19.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.19.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create another network, storing the “id” parameter returned in the response

	Test action 6: Create one IPv6 subnet of network created in test action 5 in
ipv6_ra_mode ‘dhcpv6_stateless’ and ipv6_address_mode ‘dhcpv6_stateless’,
storing the “id” parameter returned in the response

	Test action 7: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id

	Test action 8: Boot two VMs on these two networks, storing the “id” parameters returned in the response

	Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5

	Test assertion 1: The 1st vNIC of each VM gets one v4 address assigned and
the 2nd vNIC of each VM gets one v6 address actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 address
as well as the v6 subnet’s gateway ip

	Test action 10: Delete the 2 VMs created in test action 8, using the stored ids

	Test action 11: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 13: Delete the IPv6 subnet created in test action 6, using the stored id

	Test action 14: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids

	Test action 16: List all networks, verifying the ids are no longer present

	Test assertion 6: The two “id” parameters are not present in the network list

8.1.8.6.1.19.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’, and verify the ping6 available VM can ping
the other VM’s v4 address in one network and v6 address in another network as well as
the v6 subnet’s gateway ip. Specifically it verifies that:

	The IPv6 addresses in mode ‘dhcpv6_stateless’ assigned successfully

	The VM can ping the other VM’s IPv4 address in one network and IPv6 address in another
network as well as the v6 subnet’s gateway ip

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.19.5. Post conditions

None

8.1.8.6.1.20. Test Case 3 - IPv6 Address Assignment - Multiple Prefixes, Dual Stack, SLAAC, DHCPv6 Stateless

8.1.8.6.1.20.1. Short name

functest.tempest.ipv6_scenario.multiple_prefixes_dhcpv6_stateless

8.1.8.6.1.20.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’.
In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
verifies the ping6 available VM can ping the other VM’s one v4 address and two v6
addresses with different prefixes as well as the v6 subnets’ gateway ips in the
same network, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_dhcpv6_stateless

8.1.8.6.1.20.3. Test preconditions

There should exist a public router or a public network.

8.1.8.6.1.20.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.20.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create two IPv6 subnets of the network created in test action 1 in
ipv6_ra_mode ‘dhcpv6_stateless’ and ipv6_address_mode ‘dhcpv6_stateless’,
storing the “id” parameters returned in the response

	Test action 6: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids

	Test action 7: Boot two VMs on this network, storing the “id” parameters returned in the response

	Test assertion 1: The vNIC of each VM gets one v4 address and two v6 addresses with
different prefixes actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 addresses
as well as the v6 subnets’ gateway ips

	Test action 8: Delete the 2 VMs created in test action 7, using the stored ids

	Test action 9: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 11: Delete two IPv6 subnets created in test action 5, using the stored ids

	Test action 12: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 13: Delete the network created in test action 1, using the stored id

	Test action 14: List all networks, verifying the id is no longer present

	Test assertion 6: The “id” parameter is not present in the network list

8.1.8.6.1.20.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’,
and verify the ping6 available VM can ping the other VM’s v4 address and two
v6 addresses with different prefixes as well as the v6 subnets’ gateway ips in the same network.
Specifically it verifies that:

	The different prefixes IPv6 addresses in mode ‘dhcpv6_stateless’ assigned successfully

	The VM can ping the other VM’s IPv4 and IPv6 private addresses as well as the v6 subnets’ gateway ips

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.20.5. Post conditions

None

8.1.8.6.1.21. Test Case 4 - IPv6 Address Assignment - Dual Net, Multiple Prefixes, Dual Stack, SLAAC, DHCPv6 Stateless

8.1.8.6.1.21.1. Short name

functest.tempest.ipv6_scenario.dualnet_multiple_prefixes_dhcpv6_stateless

8.1.8.6.1.21.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’.
In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
using SLAAC and optional info from dnsmasq using DHCPv6 stateless. This test case then
verifies the ping6 available VM can ping the other VM’s v4 address in one network
and two v6 addresses with different prefixes in another network as well as the
v6 subnets’ gateway ips, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_dhcpv6_stateless

8.1.8.6.1.21.3. Test preconditions

There should exist a public router or a public network.

8.1.8.6.1.21.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.21.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create another network, storing the “id” parameter returned in the response

	Test action 6: Create two IPv6 subnets of network created in test action 5 in
ipv6_ra_mode ‘dhcpv6_stateless’ and ipv6_address_mode ‘dhcpv6_stateless’,
storing the “id” parameters returned in the response

	Test action 7: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids

	Test action 8: Boot two VMs on these two networks, storing the “id” parameters returned in the response

	Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5

	Test assertion 1: The vNIC of each VM gets one v4 address and two v6 addresses
with different prefixes actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 addresses
as well as the v6 subnets’ gateway ips

	Test action 10: Delete the 2 VMs created in test action 8, using the stored ids

	Test action 11: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 13: Delete two IPv6 subnets created in test action 6, using the stored ids

	Test action 14: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids

	Test action 16: List all networks, verifying the ids are no longer present

	Test assertion 6: The two “id” parameters are not present in the network list

8.1.8.6.1.21.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘dhcpv6_stateless’
and ipv6_address_mode ‘dhcpv6_stateless’,
and verify the ping6 available VM can ping the other VM’s v4 address in one network and two
v6 addresses with different prefixes in another network as well as the v6 subnets’
gateway ips. Specifically it verifies that:

	The IPv6 addresses in mode ‘dhcpv6_stateless’ assigned successfully

	The VM can ping the other VM’s IPv4 and IPv6 private addresses as well as the v6 subnets’ gateway ips

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.21.5. Post conditions

None

8.1.8.6.1.22. Test Case 5 - IPv6 Address Assignment - Dual Stack, SLAAC

8.1.8.6.1.22.1. Short name

functest.tempest.ipv6_scenario.slaac

8.1.8.6.1.22.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘slaac’ and
ipv6_address_mode ‘slaac’.
In this case, guest instance obtains IPv6 address from OpenStack managed radvd
using SLAAC. This test case then verifies the ping6 available VM can ping the other
VM’s v4 and v6 addresses as well as the v6 subnet’s gateway ip in the
same network, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_slaac_from_os

8.1.8.6.1.22.3. Test preconditions

There should exist a public router or a public network.

8.1.8.6.1.22.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.22.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create one IPv6 subnet of the network created in test action 1 in
ipv6_ra_mode ‘slaac’ and ipv6_address_mode ‘slaac’, storing the “id” parameter returned in the response

	Test action 6: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id

	Test action 7: Boot two VMs on this network, storing the “id” parameters returned in the response

	Test assertion 1: The vNIC of each VM gets one v4 address and one v6 address actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 address
as well as the v6 subnet’s gateway ip

	Test action 8: Delete the 2 VMs created in test action 7, using the stored ids

	Test action 9: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 11: Delete the IPv6 subnet created in test action 5, using the stored id

	Test action 12: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 13: Delete the network created in test action 1, using the stored id

	Test action 14: List all networks, verifying the id is no longer present

	Test assertion 6: The “id” parameter is not present in the network list

8.1.8.6.1.22.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘slaac’
and ipv6_address_mode ‘slaac’,
and verify the ping6 available VM can ping the other VM’s v4 and v6 addresses as well as
the v6 subnet’s gateway ip in the same network. Specifically it verifies that:

	The IPv6 addresses in mode ‘slaac’ assigned successfully

	The VM can ping the other VM’s IPv4 and IPv6 private addresses as well as the v6 subnet’s gateway ip

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.22.5. Post conditions

None

8.1.8.6.1.23. Test Case 6 - IPv6 Address Assignment - Dual Net, Dual Stack, SLAAC

8.1.8.6.1.23.1. Short name

functest.tempest.ipv6_scenario.dualnet_slaac

8.1.8.6.1.23.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘slaac’ and
ipv6_address_mode ‘slaac’.
In this case, guest instance obtains IPv6 address from OpenStack managed radvd
using SLAAC. This test case then verifies the ping6 available VM can ping the other
VM’s v4 address in one network and v6 address in another network as well as the
v6 subnet’s gateway ip, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_slaac_from_os

8.1.8.6.1.23.3. Test preconditions

There should exist a public router or a public network.

8.1.8.6.1.23.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.23.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create another network, storing the “id” parameter returned in the response

	Test action 6: Create one IPv6 subnet of network created in test action 5 in
ipv6_ra_mode ‘slaac’ and ipv6_address_mode ‘slaac’, storing the “id” parameter returned in the response

	Test action 7: Connect the IPv6 subnet to the router, using the stored IPv6 subnet id

	Test action 8: Boot two VMs on these two networks, storing the “id” parameters returned in the response

	Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5

	Test assertion 1: The 1st vNIC of each VM gets one v4 address assigned and
the 2nd vNIC of each VM gets one v6 address actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 address
as well as the v6 subnet’s gateway ip

	Test action 10: Delete the 2 VMs created in test action 8, using the stored ids

	Test action 11: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 13: Delete the IPv6 subnet created in test action 6, using the stored id

	Test action 14: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids

	Test action 16: List all networks, verifying the ids are no longer present

	Test assertion 6: The two “id” parameters are not present in the network list

8.1.8.6.1.23.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘slaac’
and ipv6_address_mode ‘slaac’,
and verify the ping6 available VM can ping the other VM’s v4 address in one network and
v6 address in another network as well as the v6 subnet’s gateway ip. Specifically it verifies that:

	The IPv6 addresses in mode ‘slaac’ assigned successfully

	The VM can ping the other VM’s IPv4 address in one network and IPv6 address
in another network as well as the v6 subnet’s gateway ip

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.23.5. Post conditions

None

8.1.8.6.1.24. Test Case 7 - IPv6 Address Assignment - Multiple Prefixes, Dual Stack, SLAAC

8.1.8.6.1.24.1. Short name

functest.tempest.ipv6_scenario.multiple_prefixes_slaac

8.1.8.6.1.24.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘slaac’ and
ipv6_address_mode ‘slaac’.
In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
using SLAAC. This test case then verifies the ping6 available VM can ping the other
VM’s one v4 address and two v6 addresses with different prefixes as well as the v6
subnets’ gateway ips in the same network, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_multi_prefix_slaac

8.1.8.6.1.24.3. Test preconditions

There should exists a public router or a public network.

8.1.8.6.1.24.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.24.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create two IPv6 subnets of the network created in test action 1 in
ipv6_ra_mode ‘slaac’ and ipv6_address_mode ‘slaac’, storing the “id” parameters returned in the response

	Test action 6: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids

	Test action 7: Boot two VMs on this network, storing the “id” parameters returned in the response

	Test assertion 1: The vNIC of each VM gets one v4 address and two v6 addresses with
different prefixes actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 addresses
as well as the v6 subnets’ gateway ips

	Test action 8: Delete the 2 VMs created in test action 7, using the stored ids

	Test action 9: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 10: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 11: Delete two IPv6 subnets created in test action 5, using the stored ids

	Test action 12: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 13: Delete the network created in test action 1, using the stored id

	Test action 14: List all networks, verifying the id is no longer present

	Test assertion 6: The “id” parameter is not present in the network list

8.1.8.6.1.24.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘slaac’
and ipv6_address_mode ‘slaac’,
and verify the ping6 available VM can ping the other VM’s v4 address and two
v6 addresses with different prefixes as well as the v6 subnets’ gateway ips in the same network.
Specifically it verifies that:

	The different prefixes IPv6 addresses in mode ‘slaac’ assigned successfully

	The VM can ping the other VM’s IPv4 and IPv6 private addresses as well as the v6 subnets’ gateway ips

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.24.5. Post conditions

None

8.1.8.6.1.25. Test Case 8 - IPv6 Address Assignment - Dual Net, Dual Stack, Multiple Prefixes, SLAAC

8.1.8.6.1.25.1. Short name

functest.tempest.ipv6_scenario.dualnet_multiple_prefixes_slaac

8.1.8.6.1.25.2. Use case specification

This test case evaluates IPv6 address assignment in ipv6_ra_mode ‘slaac’ and
ipv6_address_mode ‘slaac’.
In this case, guest instance obtains IPv6 addresses from OpenStack managed radvd
using SLAAC. This test case then verifies the ping6 available VM can ping the other
VM’s v4 address in one network and two v6 addresses with different prefixes in another
network as well as the v6 subnets’ gateway ips, the reference is

tempest.scenario.test_network_v6.TestGettingAddress.test_dualnet_multi_prefix_slaac

8.1.8.6.1.25.3. Test preconditions

There should exist a public router or a public network.

8.1.8.6.1.25.4. Basic test flow execution description and pass/fail criteria

8.1.8.6.1.25.4.1. Test execution

	Test action 1: Create one network, storing the “id” parameter returned in the response

	Test action 2: Create one IPv4 subnet of the created network, storing the “id”
parameter returned in the response

	Test action 3: If there exists a public router, use it as the router. Otherwise,
use the public network to create a router

	Test action 4: Connect the IPv4 subnet to the router, using the stored IPv4 subnet id

	Test action 5: Create another network, storing the “id” parameter returned in the response

	Test action 6: Create two IPv6 subnets of network created in test action 5 in
ipv6_ra_mode ‘slaac’ and ipv6_address_mode ‘slaac’, storing the “id” parameters returned in the response

	Test action 7: Connect the two IPv6 subnets to the router, using the stored IPv6 subnet ids

	Test action 8: Boot two VMs on these two networks, storing the “id” parameters returned in the response

	Test action 9: Turn on 2nd NIC of each VM for the network created in test action 5

	Test assertion 1: The vNIC of each VM gets one v4 address and two v6 addresses
with different prefixes actually assigned

	Test assertion 2: Each VM can ping the other’s v4 private address

	Test assertion 3: The ping6 available VM can ping the other’s v6 addresses
as well as the v6 subnets’ gateway ips

	Test action 10: Delete the 2 VMs created in test action 8, using the stored ids

	Test action 11: List all VMs, verifying the ids are no longer present

	Test assertion 4: The two “id” parameters are not present in the VM list

	Test action 12: Delete the IPv4 subnet created in test action 2, using the stored id

	Test action 13: Delete two IPv6 subnets created in test action 6, using the stored ids

	Test action 14: List all subnets, verifying the ids are no longer present

	Test assertion 5: The “id” parameters of IPv4 and IPv6 are not present in the list

	Test action 15: Delete the 2 networks created in test action 1 and 5, using the stored ids

	Test action 16: List all networks, verifying the ids are no longer present

	Test assertion 6: The two “id” parameters are not present in the network list

8.1.8.6.1.25.4.2. Pass / Fail criteria

This test evaluates the ability to assign IPv6 addresses in ipv6_ra_mode ‘slaac’
and ipv6_address_mode ‘slaac’,
and verify the ping6 available VM can ping the other VM’s v4 address in one network and two
v6 addresses with different prefixes in another network as well as the v6 subnets’ gateway ips.
Specifically it verifies that:

	The IPv6 addresses in mode ‘slaac’ assigned successfully

	The VM can ping the other VM’s IPv4 and IPv6 private addresses as well as the v6 subnets’ gateway ips

	All items created using create commands are able to be removed using the returned identifiers

8.1.8.6.1.25.5. Post conditions

None

8.1.9. VM Resource Scheduling on Multiple Nodes test specification

8.1.9.1. Scope

The VM resource scheduling test area evaluates the ability of the system under
test to support VM resource scheduling on multiple nodes.
The tests in this test area will evaluate capabilities to schedule VM to multiple
compute nodes directly with scheduler hints, and create server groups with policy
affinity and anti-affinity.

8.1.9.2. References

	Availability zone

	https://docs.openstack.org/newton/networking-guide/config-az.html

	Scheduling

	https://docs.openstack.org/kilo/config-reference/content/section_compute-scheduler.html

8.1.9.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	NFVi - Network Functions Virtualization infrastructure

	VIM - Virtual Infrastructure Manager

	VM - Virtual Machine

8.1.9.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.9.5. Test Area Structure

The test area is structured based on server group operations and server operations
on multiple nodes. Each test case is able to run independently, i.e. irrelevant of
the state created by a previous test. Specifically, every test performs clean-up
operations which return the system to the same state as before the test.

All these test cases are included in the test case functest.tempest.multi_node_scheduling of
OVP test suite.

8.1.9.6. Test Descriptions

8.1.9.6.1. API Used and Reference

Security Groups: https://docs.openstack.org/api-ref/network/v2/index.html#security-groups-security-groups

	create security group

	delete security group

Networks: https://docs.openstack.org/api-ref/network/v2/index.html#networks

	create network

	delete network

Routers and interface: https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers

	create router

	delete router

	add interface to router

Subnets: https://docs.openstack.org/api-ref/network/v2/index.html#subnets

	create subnet

	delete subnet

Servers: https://docs.openstack.org/api-ref/compute/

	create keypair

	create server

	show server

	delete server

	add/assign floating IP

	create server group

	delete server group

	list server groups

	show server group details

Ports: https://docs.openstack.org/api-ref/network/v2/index.html#ports

	create port

	delete port

Floating IPs: https://docs.openstack.org/api-ref/network/v2/index.html#floating-ips-floatingips

	create floating IP

	delete floating IP

Availability zone: https://docs.openstack.org/api-ref/compute/

	get availability zone

8.1.9.6.2. Test Case 1 - Schedule VM to compute nodes

8.1.9.6.2.1. Test case specification

tempest.scenario.test_server_multinode.TestServerMultinode.test_schedule_to_all_nodes

8.1.9.6.2.2. Test preconditions

	At least 2 compute nodes

	Openstack nova, neutron services are available

	One public network

8.1.9.6.2.3. Basic test flow execution description and pass/fail criteria

8.1.9.6.2.3.1. Test execution

	Test action 1: Get all availability zones AZONES1 in the SUT

	Test action 2: Get all compute nodes in AZONES1

	Test action 3: Get the value of ‘min_compute_nodes’ which is set by user in tempest
config file and means the minimum number of compute nodes expected

	Test assertion 1: Verify that SUT has at least as many compute nodes as
specified by the ‘min_compute_nodes’ threshold

	Test action 4: Create one server for each compute node, up to the ‘min_compute_nodes’ threshold

	Test assertion 2: Verify the number of servers matches the ‘min_compute_nodes’ threshold

	Test action 5: Get every server’s ‘hostId’ and store them in a set which has no duplicate values

	Test assertion 3: Verify the length of the set equals to the number of servers to ensure
that every server ended up on a different host

	Test action 6: Delete the created servers

8.1.9.6.2.3.2. Pass / Fail criteria

This test evaluates the functionality of VM resource scheduling.
Specifically, the test verifies that:

	VMs are scheduled to the requested compute nodes correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.9.6.2.4. Post conditions

N/A

8.1.9.6.3. Test Case 2 - Test create and delete multiple server groups with same name and policy

8.1.9.6.3.1. Test case specification

tempest.api.compute.servers.test_server_group.ServerGroupTestJSON.test_create_delete_multiple_server_groups_with_same_name_policy

8.1.9.6.3.2. Test preconditions

None

8.1.9.6.3.3. Basic test flow execution description and pass/fail criteria

8.1.9.6.3.3.1. Test execution

	Test action 1: Generate a random name N1

	Test action 2: Create a server group SERG1 with N1 and policy affinity

	Test action 3: Create another server group SERG2 with N1 and policy affinity

	Test assertion 1: The names of SERG1 and SERG2 are the same

	Test assertion 2: The ‘policies’ of SERG1 and SERG2 are the same

	Test assertion 3: The ids of SERG1 and SERG2 are different

	Test action 4: Delete SERG1 and SERG2

	Test action 5: List all server groups

	Test assertion 4: SERG1 and SERG2 are not in the list

8.1.9.6.3.3.2. Pass / Fail criteria

This test evaluates the functionality of creating and deleting server groups with the same name and policy.
Specifically, the test verifies that:

	Server groups can be created with the same name and policy.

	Server groups with the same name and policy can be deleted successfully.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.9.6.3.4. Post conditions

N/A

8.1.9.6.4. Test Case 3 - Test create and delete server group with affinity policy

8.1.9.6.4.1. Test case specification

tempest.api.compute.servers.test_server_group.ServerGroupTestJSON.test_create_delete_server_group_with_affinity_policy

8.1.9.6.4.2. Test preconditions

None

8.1.9.6.4.3. Basic test flow execution description and pass/fail criteria

8.1.9.6.4.3.1. Test execution

	Test action 1: Generate a random name N1

	Test action 2: Create a server group SERG1 with N1 and policy affinity

	Test assertion 1: The name of SERG1 returned in the response is the same as N1

	Test assertion 2: The ‘policies’ of SERG1 returned in the response is affinity

	Test action 3: Delete SERG1 and list all server groups

	Test assertion 3: SERG1 is not in the list

8.1.9.6.4.3.2. Pass / Fail criteria

This test evaluates the functionality of creating and deleting server group with affinity policy.
Specifically, the test verifies that:

	Server group can be created with affinity policy and deleted successfully.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.9.6.4.4. Post conditions

N/A

8.1.9.6.5. Test Case 4 - Test create and delete server group with anti-affinity policy

8.1.9.6.5.1. Test case specification

tempest.api.compute.servers.test_server_group.ServerGroupTestJSON.test_create_delete_server_group_with_anti_affinity_policy

8.1.9.6.5.2. Test preconditions

None

8.1.9.6.5.3. Basic test flow execution description and pass/fail criteria

8.1.9.6.5.3.1. Test execution

	Test action 1: Generate a random name N1

	Test action 2: Create a server group SERG1 with N1 and policy anti-affinity

	Test assertion 1: The name of SERG1 returned in the response is the same as N1

	Test assertion 2: The ‘policies’ of SERG1 returned in the response is anti-affinity

	Test action 3: Delete SERG1 and list all server groups

	Test assertion 3: SERG1 is not in the list

8.1.9.6.5.3.2. Pass / Fail criteria

This test evaluates the functionality of creating and deleting server group with anti-affinity policy.
Specifically, the test verifies that:

	Server group can be created with anti-affinity policy and deleted successfully.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.9.6.5.4. Post conditions

N/A

8.1.9.6.6. Test Case 5 - Test list server groups

8.1.9.6.6.1. Test case specification

tempest.api.compute.servers.test_server_group.ServerGroupTestJSON.test_list_server_groups

8.1.9.6.6.2. Test preconditions

None

8.1.9.6.6.3. Basic test flow execution description and pass/fail criteria

8.1.9.6.6.3.1. Test execution

	Test action 1: Generate a random name N1

	Test action 2: Create a server group SERG1 with N1 and policy affinity

	Test action 3: List all server groups

	Test assertion 1: SERG1 is in the list

	Test action 4: Delete SERG1

8.1.9.6.6.3.2. Pass / Fail criteria

This test evaluates the functionality of listing server groups.
Specifically, the test verifies that:

	Server groups can be listed successfully.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.9.6.6.4. Post conditions

N/A

8.1.9.6.7. Test Case 6 - Test show server group details

8.1.9.6.7.1. Test case specification

tempest.api.compute.servers.test_server_group.ServerGroupTestJSON.test_show_server_group

8.1.9.6.7.2. Test preconditions

None

8.1.9.6.7.3. Basic test flow execution description and pass/fail criteria

8.1.9.6.7.3.1. Test execution

	Test action 1: Generate a random name N1

	Test action 2: Create a server group SERG1 with N1 and policy affinity, and stored
the details (D1) returned in the response

	Test action 3: Show the details (D2) of SERG1

	Test assertion 1: All values in D1 are the same as the values in D2

	Test action 4: Delete SERG1

8.1.9.6.7.3.2. Pass / Fail criteria

This test evaluates the functionality of showing server group details.
Specifically, the test verifies that:

	Server groups can be shown successfully.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.9.6.7.4. Post conditions

N/A

8.1.10. Tempest Network API test specification

8.1.10.1. Scope

The Tempest Network API test area tests the basic operations of the System Under
Test (SUT) through the life of a VNF.
The tests in this test area will evaluate IPv4 network runtime operations
functionality.

These runtime operations may include that create, list, verify or delete:

	Floating IP

	Network

	Subnet

	Port

	External Network Visibility

	Router

	Subnetpools

	API Version Resources

8.1.10.2. References

Networks: [https://docs.openstack.org/api-ref/network/v2/#networks]

	create network

	delete network

Routers and interface: [https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers]

	create router

	update router

	delete router

	add interface to router

Subnets: [https://docs.openstack.org/api-ref/network/v2/index.html#subnets]

	create subnet

	update subnet

	delete subnet

Subnetpools: [https://docs.openstack.org/api-ref/network/v2/#subnet-pools-extension-subnetpools]

	create subnetpool

	update subnetpool

	delete subnetpool

Ports: [https://docs.openstack.org/api-ref/network/v2/index.html#ports]

	create port

	update port

	delete port

Floating IPs: [https://docs.openstack.org/api-ref/network/v2/index.html#floating-ips-floatingips]

	create floating IP

	delete floating IP

Api Versions [https://docs.openstack.org/api-ref/network/v2/#api-versions]

	list version

	show version

8.1.10.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.10.4. Test Area Structure

The test area is structured in individual tests as listed below.
For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

All these test cases are included in the test case functest.tempest.network of
OVP test suite.

	List, Show and Verify the Details of the Available Extensions [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_extensions.py]
	
	tempest.api.network.test_extensions.ExtensionsTestJSON.test_list_show_extensions

	Floating IP tests [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_floating_ips.py]
	
	Create a Floating IP

	Update a Floating IP

	Delete a Floating IP

	List all Floating IPs

	Show Floating IP Details

	Associate a Floating IP with a Port and then Delete that Port

	Associate a Floating IP with a Port and then with a Port on Another Router

	tempest.api.network.test_floating_ips.FloatingIPTestJSON.test_create_floating_ip_specifying_a_fixed_ip_address

	tempest.api.network.test_floating_ips.FloatingIPTestJSON.test_create_list_show_update_delete_floating_ip

	Network tests [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_networks.py#L405]
	
	Bulk Network Creation & Deletion

	Bulk Subnet Create & Deletion

	Bulk Port Creation & Deletion

	List Project’s Networks

	tempest.api.network.test_networks.BulkNetworkOpsTest.test_bulk_create_delete_network

	tempest.api.network.test_networks.BulkNetworkOpsTest.test_bulk_create_delete_port

	tempest.api.network.test_networks.BulkNetworkOpsTest.test_bulk_create_delete_subnet

	External Network Visibility test [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_networks.py#L526]
	
	tempest.api.network.test_networks.NetworksTest.test_external_network_visibility

	Create Port with No Security Groups test [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_ports.py]
	
	tempest.api.network.test_ports.PortsTestJSON.test_create_port_with_no_securitygroups

	Router test [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_routers.py]
	
	tempest.api.network.test_routers.RoutersTest.test_add_multiple_router_interfaces

	tempest.api.network.test_routers.RoutersTest.test_add_remove_router_interface_with_port_id

	tempest.api.network.test_routers.RoutersTest.test_add_remove_router_interface_with_subnet_id

	tempest.api.network.test_routers.RoutersTest.test_create_show_list_update_delete_router

	Create, List, Show, Update and Delete Subnetpools [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_subnetpools_extensions.py]
	
	tempest.api.network.test_subnetpools_extensions.SubnetPoolsTestJSON.test_create_list_show_update_delete_subnetpools

	API Version Resources test [https://github.com/openstack/tempest/blob/master/tempest/api/network/test_versions.py]
	
	tempest.api.network.test_versions.NetworksApiDiscovery.test_api_version_resources

8.1.11. Tempest Network Scenario test specification

8.1.11.1. Scope

The Tempest Network scenario test area evaluates the ability of the
system under test to support dynamic network runtime operations through the
life of a VNF (e.g. attach/detach, enable/disable, read stats).
The tests in this test area will evaluate IPv4 network runtime operations
functionality. These runtime operations includes hotpluging network interface,
detaching floating-ip from VM, attaching floating-ip to VM, updating subnet’s
DNS, updating VM instance port admin state and updating router admin state.

8.1.11.2. References

	DNS

	https://docs.openstack.org/newton/networking-guide/config-dns-res.html

8.1.11.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test
area

	API - Application Programming Interface

	DNS - Domain Name System

	ICMP - Internet Control Message Protocol

	MAC - Media Access Control

	NIC - Network Interface Controller

	NFVi - Network Functions Virtualization infrastructure

	SSH - Secure Shell

	TCP - Transmission Control Protocol

	VIM - Virtual Infrastructure Manager

	VM - Virtual Machine

8.1.11.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.11.5. Test Area Structure

The test area is structured based on dynamic network runtime operations. Each
test case is able to run independently, i.e. irrelevant of the state created by
a previous test. Specifically, every test performs clean-up operations which
return the system to the same state as before the test.

All these test cases are included in the test case functest.tempest.network_scenario of
OVP test suite.

8.1.11.6. Test Descriptions

8.1.11.6.1. API Used and Reference

Security Groups: https://docs.openstack.org/api-ref/network/v2/index.html#security-groups-security-groups

	create security group

	delete security group

Networks: https://docs.openstack.org/api-ref/network/v2/index.html#networks

	create network

	delete network

Routers and interface: https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers

	create router

	update router

	delete router

	add interface to router

Subnets: https://docs.openstack.org/api-ref/network/v2/index.html#subnets

	create subnet

	update subnet

	delete subnet

Servers: https://docs.openstack.org/api-ref/compute/

	create keypair

	create server

	delete server

	add/assign floating IP

	disassociate floating IP

Ports: https://docs.openstack.org/api-ref/network/v2/index.html#ports

	create port

	update port

	delete port

Floating IPs: https://docs.openstack.org/api-ref/network/v2/index.html#floating-ips-floatingips

	create floating IP

	delete floating IP

8.1.11.6.2. Test Case 1 - Basic network operations

8.1.11.6.2.1. Test case specification

tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_network_basic_ops

8.1.11.6.2.2. Test preconditions

	Nova has been configured to boot VMs with Neutron-managed networking

	Openstack nova, neutron services are available

	One public network

8.1.11.6.2.3. Basic test flow execution description and pass/fail criteria

8.1.11.6.2.3.1. Test execution

	Test action 1: Create a security group SG1, which has rules for allowing
incoming SSH and ICMP traffic

	Test action 2: Create a neutron network NET1

	Test action 3: Create a tenant router R1 which routes traffic to public network

	Test action 4: Create a subnet SUBNET1 and add it as router interface

	Test action 5: Create a server VM1 with SG1 and NET1, and assign a floating
IP FIP1 (via R1) to VM1

	Test assertion 1: Ping FIP1 and SSH to VM1 via FIP1 successfully

	Test assertion 2: Ping the internal gateway from VM1 successfully

	Test assertion 3: Ping the default gateway from VM1 using its floating IP
FIP1 successfully

	Test action 6: Detach FIP1 from VM1

	Test assertion 4: VM1 becomes unreachable after FIP1 disassociated

	Test action 7: Create a new server VM2 with NET1, and associate floating IP FIP1 to VM2

	Test assertion 5: Ping FIP1 and SSH to VM2 via FIP1 successfully

	Test action 8: Delete SG1, NET1, SUBNET1, R1, VM1, VM2 and FIP1

8.1.11.6.2.3.2. Pass / Fail criteria

This test evaluates the functionality of basic network operations.
Specifically, the test verifies that:

	The Tempest host can ping VM’s IP address. This implies, but does not
guarantee (see the ssh check that follows), that the VM has been assigned the
correct IP address and has connectivity to the Tempest host.

	The Tempest host can perform key-based authentication to an ssh server hosted
at VM’s IP address. This check guarantees that the IP address is associated
with the target VM.

	The Tempest host can ssh into the VM via the IP address and successfully ping
the internal gateway address, implying connectivity to another VM on the same network.

	The Tempest host can ssh into the VM via the IP address and successfully ping
the default gateway, implying external connectivity.

	Detach the floating-ip from the VM and VM becomes unreachable.

	Associate attached floating ip to a new VM and the new VM is reachable.

	Floating IP status is updated correctly after each change.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.11.6.2.4. Post conditions

N/A

8.1.11.6.3. Test Case 2 - Hotplug network interface

8.1.11.6.3.1. Test case specification

tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_hotplug_nic

8.1.11.6.3.2. Test preconditions

	Nova has been configured to boot VMs with Neutron-managed networking

	Compute interface_attach feature is enabled

	VM vnic_type is not set to ‘direct’ or ‘macvtap’

	Openstack nova, neutron services are available

	One public network

8.1.11.6.3.3. Basic test flow execution description and pass/fail criteria

8.1.11.6.3.3.1. Test execution

	Test action 1: Create a security group SG1, which has rules for allowing
incoming SSH and ICMP traffic

	Test action 2: Create a neutron network NET1

	Test action 3: Create a tenant router R1 which routes traffic to public network

	Test action 4: Create a subnet SUBNET1 and add it as router interface

	Test action 5: Create a server VM1 with SG1 and NET1, and assign a floating
IP FIP1 (via R1) to VM1

	Test assertion 1: Ping FIP1 and SSH to VM1 with FIP1 successfully

	Test action 6: Create a second neutron network NET2 and subnet SUBNET2, and
attach VM1 to NET2

	Test action 7: Get VM1’s ethernet interface NIC2 for NET2

	Test assertion 2: Ping NET2’s internal gateway successfully

	Test action 8: Delete SG1, NET1, NET2, SUBNET1, SUBNET2, R1, NIC2, VM1 and FIP1

8.1.11.6.3.3.2. Pass / Fail criteria

This test evaluates the functionality of adding network to an active VM.
Specifically, the test verifies that:

	New network interface can be added to an existing VM successfully.

	The Tempest host can ssh into the VM via the IP address and successfully ping
the new network’s internal gateway address, implying connectivity to the new network.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.11.6.3.4. Post conditions

N/A

8.1.11.6.4. Test Case 3 - Update subnet’s configuration

8.1.11.6.4.1. Test case specification

tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_subnet_details

8.1.11.6.4.2. Test preconditions

	Nova has been configured to boot VMs with Neutron-managed networking

	DHCP client is available

	Tenant networks should be non-shared and isolated

	Openstack nova, neutron services are available

	One public network

8.1.11.6.4.3. Basic test flow execution description and pass/fail criteria

8.1.11.6.4.3.1. Test execution

	Test action 1: Create a security group SG1, which has rules for allowing
incoming SSH and ICMP traffic

	Test action 2: Create a neutron network NET1

	Test action 3: Create a tenant router R1 which routes traffic to public network

	Test action 4: Create a subnet SUBNET1 and add it as router interface,
configure SUBNET1 with dns nameserver ‘1.2.3.4’

	Test action 5: Create a server VM1 with SG1 and NET1, and assign a floating
IP FIP1 (via R1) to VM1

	Test assertion 1: Ping FIP1 and SSH to VM1 with FIP1 successfully

	Test assertion 2: Retrieve the VM1’s configured dns and verify it matches
the one configured for SUBNET1

	Test action 6: Update SUBNET1’s dns to ‘9.8.7.6’

	Test assertion 3: After triggering the DHCP renew from the VM manually,
retrieve the VM1’s configured dns and verify it has been successfully updated

	Test action 7: Delete SG1, NET1, SUBNET1, R1, VM1 and FIP1

8.1.11.6.4.3.2. Pass / Fail criteria

This test evaluates the functionality of updating subnet’s configurations.
Specifically, the test verifies that:

	Updating subnet’s DNS server configurations are affecting the VMs.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.11.6.4.4. Post conditions

N/A

8.1.11.6.5. Test Case 4 - Update VM port admin state

8.1.11.6.5.1. Test case specification

tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_update_instance_port_admin_state

8.1.11.6.5.2. Test preconditions

	Nova has been configured to boot VMs with Neutron-managed networking

	Network port_admin_state_change feature is enabled

	Openstack nova, neutron services are available

	One public network

8.1.11.6.5.3. Basic test flow execution description and pass/fail criteria

8.1.11.6.5.3.1. Test execution

	Test action 1: Create a security group SG1, which has rules for allowing
incoming SSH and ICMP traffic

	Test action 2: Create a neutron network NET1

	Test action 3: Create a tenant router R1 which routes traffic to public network

	Test action 4: Create a subnet SUBNET1 and add it as router interface

	Test action 5: Create a server VM1 with SG1 and NET1, and assign a floating
IP FIP1 (via R1) to VM1

	Test action 6: Create a server VM2 with SG1 and NET1, and assign a floating
IP FIP2 to VM2

	Test action 7: Get a SSH client SSHCLNT1 to VM2

	Test assertion 1: Ping FIP1 and SSH to VM1 with FIP1 successfully

	Test assertion 2: Ping FIP1 via SSHCLNT1 successfully

	Test action 8: Update admin_state_up attribute of VM1 port to False

	Test assertion 3: Ping FIP1 and SSH to VM1 with FIP1 failed

	Test assertion 4: Ping FIP1 via SSHCLNT1 failed

	Test action 9: Update admin_state_up attribute of VM1 port to True

	Test assertion 5: Ping FIP1 and SSH to VM1 with FIP1 successfully

	Test assertion 6: Ping FIP1 via SSHCLNT1 successfully

	Test action 10: Delete SG1, NET1, SUBNET1, R1, SSHCLNT1, VM1, VM2 and FIP1, FIP2

8.1.11.6.5.3.2. Pass / Fail criteria

This test evaluates the VM public and project connectivity status by changing VM port
admin_state_up to True & False. Specifically, the test verifies that:

	Public and project connectivity is reachable before updating admin_state_up
attribute of VM port to False.

	Public and project connectivity is unreachable after updating admin_state_up
attribute of VM port to False.

	Public and project connectivity is reachable after updating admin_state_up
attribute of VM port from False to True.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.11.6.5.4. Post conditions

N/A

8.1.11.6.6. Test Case 5 - Update router admin state

8.1.11.6.6.1. Test case specification

tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_update_router_admin_state

8.1.11.6.6.2. Test preconditions

	Nova has been configured to boot VMs with Neutron-managed networking

	Multi-tenant networks capabilities

	Openstack nova, neutron services are available

	One public network

8.1.11.6.6.3. Basic test flow execution description and pass/fail criteria

8.1.11.6.6.3.1. Test execution

	Test action 1: Create a security group SG1, which has rules for allowing
incoming SSH and ICMP traffic

	Test action 2: Create a neutron network NET1

	Test action 3: Create a tenant router R1 which routes traffic to public network

	Test action 4: Create a subnet SUBNET1 and add it as router interface

	Test action 5: Create a server VM1 with SG1 and NET1, and assign a floating
IP FIP1 (via R1) to VM1

	Test assertion 1: Ping FIP1 and SSH to VM1 with FIP1 successfully

	Test action 6: Update admin_state_up attribute of R1 to False

	Test assertion 2: Ping FIP1 and SSH to VM1 with FIP1 failed

	Test action 7: Update admin_state_up attribute of R1 to True

	Test assertion 3: Ping FIP1 and SSH to VM1 with FIP1 successfully

	Test action 8: Delete SG1, NET1, SUBNET1, R1, VM1 and FIP1

8.1.11.6.6.3.2. Pass / Fail criteria

This test evaluates the router public connectivity status by changing
router admin_state_up to True & False.
Specifically, the test verifies that:

	Public connectivity is reachable before updating admin_state_up attribute of router to False.

	Public connectivity is unreachable after updating admin_state_up attribute of router to False.

	Public connectivity is reachable after updating admin_state_up attribute of router.
from False to True

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.11.6.6.4. Post conditions

N/A

8.1.12. Security Group and Port Security test specification

8.1.12.1. Scope

The security group and port security test area evaluates the ability of the
system under test to support packet filtering by security group and port security.
The tests in this test area will evaluate preventing MAC spoofing by port security,
basic security group operations including testing cross/in tenant traffic, testing
multiple security groups, using port security to disable security groups and
updating security groups.

8.1.12.2. References

N/A

8.1.12.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test
area

	API - Application Programming Interface

	ICMP - Internet Control Message Protocol

	MAC - Media Access Control

	NFVi - Network Functions Virtualization infrastructure

	SSH - Secure Shell

	TCP - Transmission Control Protocol

	VIM - Virtual Infrastructure Manager

	VM - Virtual Machine

8.1.12.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.12.5. Test Area Structure

The test area is structured based on the basic operations of security group and
port security. Each test case is able to run independently, i.e. irrelevant of
the state created by a previous test. Specifically, every test performs clean-up
operations which return the system to the same state as before the test.

All these test cases are included in the test case functest.tempest.network_security of
OVP test suite.

8.1.12.6. Test Descriptions

8.1.12.6.1. API Used and Reference

Security Groups: https://docs.openstack.org/api-ref/network/v2/index.html#security-groups-security-groups

	create security group

	delete security group

Networks: https://docs.openstack.org/api-ref/network/v2/index.html#networks

	create network

	delete network

	list networks

	create floating ip

	delete floating ip

Routers and interface: https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers

	create router

	delete router

	list routers

	add interface to router

Subnets: https://docs.openstack.org/api-ref/network/v2/index.html#subnets

	create subnet

	list subnets

	delete subnet

Servers: https://docs.openstack.org/api-ref/compute/

	create keypair

	create server

	delete server

	add/assign floating ip

Ports: https://docs.openstack.org/api-ref/network/v2/index.html#ports

	update port

	list ports

	show port details

8.1.12.6.2. Test Case 1 - Port Security and MAC Spoofing

8.1.12.6.2.1. Test case specification

tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_port_security_macspoofing_port

8.1.12.6.2.2. Test preconditions

	Neutron port-security extension API

	Neutron security-group extension API

	One public network

8.1.12.6.2.3. Basic test flow execution description and pass/fail criteria

8.1.12.6.2.3.1. Test execution

	Test action 1: Create a security group SG1, which has rules for allowing incoming
SSH and ICMP traffic

	Test action 2: Create a neutron network NET1

	Test action 3: Create a tenant router R1 which routes traffic to public network

	Test action 4: Create a subnet SUBNET1 and add it as router interface

	Test action 5: Create a server VM1 with SG1 and NET1, and assign a floating ip
FIP1 (via R1) to VM1

	Test action 6: Verify can ping FIP1 successfully and can SSH to VM1 with FIP1

	Test action 7: Create a second neutron network NET2 and subnet SUBNET2, and attach VM1 to NET2

	Test action 8: Get VM1’s ethernet interface NIC2 for NET2

	Test action 9: Create second server VM2 on NET2

	Test action 10: Verify VM1 is able to communicate with VM2 via NIC2

	Test action 11: Login to VM1 and spoof the MAC address of NIC2 to “00:00:00:00:00:01”

	Test action 12: Verify VM1 fails to communicate with VM2 via NIC2

	Test assertion 1: The ping operation is failed

	Test action 13: Update ‘security_groups’ to be none for VM1’s NIC2 port

	Test action 14: Update ‘port_security_enable’ to be False for VM1’s NIC2 port

	Test action 15: Verify now VM1 is able to communicate with VM2 via NIC2

	Test assertion 2: The ping operation is successful

	Test action 16: Delete SG1, NET1, NET2, SUBNET1, SUBNET2, R1, VM1, VM2 and FIP1

8.1.12.6.2.3.2. Pass / Fail criteria

This test evaluates the ability to prevent MAC spoofing by using port security.
Specifically, the test verifies that:

	With port security, the ICMP packets from a spoof server cannot pass the port.

	Without port security, the ICMP packets from a spoof server can pass the port.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.12.6.2.4. Post conditions

N/A

8.1.12.6.3. Test Case 2 - Test Security Group Cross Tenant Traffic

8.1.12.6.3.1. Test case specification

tempest.scenario.test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_cross_tenant_traffic

8.1.12.6.3.2. Test preconditions

	Neutron security-group extension API

	Two tenants

	One public network

8.1.12.6.3.3. Basic test flow execution description and pass/fail criteria

8.1.12.6.3.3.1. Test execution

	Test action 1: Create a neutron network NET1 for primary tenant

	Test action 2: Create a primary tenant router R1 which routes traffic to public network

	Test action 3: Create a subnet SUBNET1 and add it as router interface

	Test action 4: Create 2 empty security groups SG1 and SG2 for primary tenant

	Test action 5: Add a tcp rule to SG1

	Test action 6: Create a server VM1 with SG1, SG2 and NET1, and assign a floating ip
FIP1 (via R1) to VM1

	Test action 7: Repeat test action 1 to 6 and create NET2, R2, SUBNET2, SG3, SG4,
FIP2 and VM2 for an alt_tenant

	Test action 8: Verify VM1 fails to communicate with VM2 through FIP2

	Test assertion 1: The ping operation is failed

	Test action 9: Add ICMP rule to SG4

	Test action 10: Verify VM1 is able to communicate with VM2 through FIP2

	Test assertion 2: The ping operation is successful

	Test action 11: Verify VM2 fails to communicate with VM1 through FIP1

	Test assertion 3: The ping operation is failed

	Test action 12: Add ICMP rule to SG2

	Test action 13: Verify VM2 is able to communicate with VM1 through FIP1

	Test assertion 4: The ping operation is successful

	Test action 14: Delete SG1, SG2, SG3, SG4, NET1, NET2, SUBNET1, SUBNET2, R1, R2,
VM1, VM2, FIP1 and FIP2

8.1.12.6.3.3.2. Pass / Fail criteria

This test evaluates the ability of the security group to filter packets cross tenant.
Specifically, the test verifies that:

	Without ICMP security group rule, the ICMP packets cannot be received by the server
in another tenant which differs from the source server.

	With ingress ICMP security group rule enabled only at tenant1, the server in tenant2
can ping server in tenant1 but not the reverse direction.

	With ingress ICMP security group rule enabled at tenant2 also, the ping works from both directions.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.12.6.3.4. Post conditions

N/A

8.1.12.6.4. Test Case 3 - Test Security Group in Tenant Traffic

8.1.12.6.4.1. Test case specification

tempest.scenario.test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_in_tenant_traffic

8.1.12.6.4.2. Test preconditions

	Neutron security-group extension API

	One public network

8.1.12.6.4.3. Basic test flow execution description and pass/fail criteria

8.1.12.6.4.3.1. Test execution

	Test action 1: Create a neutron network NET1

	Test action 2: Create a tenant router R1 which routes traffic to public network

	Test action 3: Create a subnet SUBNET1 and add it as router interface

	Test action 4: Create 2 empty security groups SG1 and SG2

	Test action 5: Add a tcp rule to SG1

	Test action 6: Create a server VM1 with SG1, SG2 and NET1, and assign a floating ip
FIP1 (via R1) to VM1

	Test action 7: Create second server VM2 with default security group and NET1

	Test action 8: Verify VM1 fails to communicate with VM2 through VM2’s fixed ip

	Test assertion 1: The ping operation is failed

	Test action 9: Add ICMP security group rule to default security group

	Test action 10: Verify VM1 is able to communicate with VM2 through VM2’s fixed ip

	Test assertion 2: The ping operation is successful

	Test action 11: Delete SG1, SG2, NET1, SUBNET1, R1, VM1, VM2 and FIP1

8.1.12.6.4.3.2. Pass / Fail criteria

This test evaluates the ability of the security group to filter packets in one tenant.
Specifically, the test verifies that:

	Without ICMP security group rule, the ICMP packets cannot be received by the server
in the same tenant.

	With ICMP security group rule, the ICMP packets can be received by the server
in the same tenant.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.12.6.4.4. Post conditions

N/A

8.1.12.6.5. Test Case 4 - Test Multiple Security Groups

8.1.12.6.5.1. Test case specification

tempest.scenario.test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_multiple_security_groups

8.1.12.6.5.2. Test preconditions

	Neutron security-group extension API

	One public network

8.1.12.6.5.3. Basic test flow execution description and pass/fail criteria

8.1.12.6.5.3.1. Test execution

	Test action 1: Create a neutron network NET1

	Test action 2: Create a tenant router R1 which routes traffic to public network

	Test action 3: Create a subnet SUBNET1 and add it as router interface

	Test action 4: Create 2 empty security groups SG1 and SG2

	Test action 5: Add a tcp rule to SG1

	Test action 6: Create a server VM1 with SG1, SG2 and NET1, and assign a floating ip
FIP1 (via R1) to VM1

	Test action 7: Verify failed to ping FIP1

	Test assertion 1: The ping operation is failed

	Test action 8: Add ICMP security group rule to SG2

	Test action 9: Verify can ping FIP1 successfully

	Test assertion 2: The ping operation is successful

	Test action 10: Verify can SSH to VM1 with FIP1

	Test assertion 3: Can SSH to VM1 successfully

	Test action 11: Delete SG1, SG2, NET1, SUBNET1, R1, VM1 and FIP1

8.1.12.6.5.3.2. Pass / Fail criteria

This test evaluates the ability of multiple security groups to filter packets.
Specifically, the test verifies that:

	A server with 2 security groups, one with TCP rule and without ICMP rule,
cannot receive the ICMP packets sending from the tempest host machine.

	A server with 2 security groups, one with TCP rule and the other with ICMP rule,
can receive the ICMP packets sending from the tempest host machine and be connected
via the SSH client.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.12.6.5.4. Post conditions

N/A

8.1.12.6.6. Test Case 5 - Test Port Security Disable Security Group

8.1.12.6.6.1. Test case specification

tempest.scenario.test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_port_security_disable_security_group

8.1.12.6.6.2. Test preconditions

	Neutron security-group extension API

	Neutron port-security extension API

	One public network

8.1.12.6.6.3. Basic test flow execution description and pass/fail criteria

8.1.12.6.6.3.1. Test execution

	Test action 1: Create a neutron network NET1

	Test action 2: Create a tenant router R1 which routes traffic to public network

	Test action 3: Create a subnet SUBNET1 and add it as router interface

	Test action 4: Create 2 empty security groups SG1 and SG2

	Test action 5: Add a tcp rule to SG1

	Test action 6: Create a server VM1 with SG1, SG2 and NET1, and assign a floating ip
FIP1 (via R1) to VM1

	Test action 7: Create second server VM2 with default security group and NET1

	Test action 8: Update ‘security_groups’ to be none and ‘port_security_enabled’ to be
True for VM2’s port

	Test action 9: Verify VM1 fails to communicate with VM2 through VM2’s fixed ip

	Test assertion 1: The ping operation is failed

	Test action 10: Update ‘security_groups’ to be none and ‘port_security_enabled’ to be
False for VM2’s port

	Test action 11: Verify VM1 is able to communicate with VM2 through VM2’s fixed ip

	Test assertion 2: The ping operation is successful

	Test action 12: Delete SG1, SG2, NET1, SUBNET1, R1, VM1, VM2 and FIP1

8.1.12.6.6.3.2. Pass / Fail criteria

This test evaluates the ability of port security to disable security group.
Specifically, the test verifies that:

	The ICMP packets cannot pass the port whose ‘port_security_enabled’ is True
and security_groups is none.

	The ICMP packets can pass the port whose ‘port_security_enabled’ is False
and security_groups is none.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.12.6.6.4. Post conditions

N/A

8.1.12.6.7. Test Case 6 - Test Update Port Security Group

8.1.12.6.7.1. Test case specification

tempest.scenario.test_security_groups_basic_ops.TestSecurityGroupsBasicOps.test_port_update_new_security_group

8.1.12.6.7.2. Test preconditions

	Neutron security-group extension API

	One public network

8.1.12.6.7.3. Basic test flow execution description and pass/fail criteria

8.1.12.6.7.3.1. Test execution

	Test action 1: Create a neutron network NET1

	Test action 2: Create a tenant router R1 which routes traffic to public network

	Test action 3: Create a subnet SUBNET1 and add it as router interface

	Test action 4: Create 2 empty security groups SG1 and SG2

	Test action 5: Add a tcp rule to SG1

	Test action 6: Create a server VM1 with SG1, SG2 and NET1, and assign a floating ip
FIP1 (via R1) to VM1

	Test action 7: Create third empty security group SG3

	Test action 8: Add ICMP rule to SG3

	Test action 9: Create second server VM2 with default security group and NET1

	Test action 10: Verify VM1 fails to communicate with VM2 through VM2’s fixed ip

	Test assertion 1: The ping operation is failed

	Test action 11: Update ‘security_groups’ to be SG3 for VM2’s port

	Test action 12: Verify VM1 is able to communicate with VM2 through VM2’s fixed ip

	Test assertion 2: The ping operation is successful

	Test action 13: Delete SG1, SG2, SG3, NET1, SUBNET1, R1, VM1, VM2 and FIP1

8.1.12.6.7.3.2. Pass / Fail criteria

This test evaluates the ability to update port with a new security group.
Specifically, the test verifies that:

	Without ICMP security group rule, the VM cannot receive ICMP packets.

	Update the port’s security group which has ICMP rule, the VM can receive ICMP packets.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.12.6.7.4. Post conditions

N/A

8.1.13. OpenStack Interoperability Test Specification

The test cases documented here are the API test cases in the OpenStack
Interop guideline 2018.11 as implemented by the RefStack client.

8.1.13.1. References

	OpenStack Governance/Interop

	https://wiki.openstack.org/wiki/Governance/InteropWG

	OpenStack Interoperability guidelines (version 2018.11)

	https://github.com/openstack/interop/blob/master/2018.11.json

	Refstack client

	https://github.com/openstack/refstack-client

All OpenStack interop test cases addressed in OVP are covered in the
following test specification documents.

	8.1.13.1.1. VIM compute operations test specification

	8.1.13.1.2. VIM identity operations test specification

	8.1.13.1.3. VIM image operations test specification

	8.1.13.1.4. VIM network operations test specification

	8.1.13.1.5. VIM volume operations test specification

8.1.13.1.1. VIM compute operations test specification

8.1.13.1.1.1. Scope

The VIM compute operations test area evaluates the ability of the system under
test to support VIM compute operations. The test cases documented here are the
compute API test cases in the OpenStack Interop guideline 2018.11 as implemented
by the RefStack client. These test cases will evaluate basic OpenStack (as a VIM)
compute operations, including:

	Image management operations

	Basic support operations

	API version support operations

	Quotas management operations

	Basic server operations

	Volume management operations

8.1.13.1.1.2. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	NFVi - Network Functions Virtualization infrastructure

	SUT - System Under Test

	UUID - Universally Unique IDentifier

	VIM - Virtual Infrastructure Manager

	VM - Virtual Machine

8.1.13.1.1.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM deployed with a Pharos
compliant infrastructure.

8.1.13.1.1.4. Test Area Structure

The test area is structured based on VIM compute API operations. Each test case is
able to run independently, i.e. irrelevant of the state created by a previous test.
Specifically, every test performs clean-up operations which return the system to
the same state as before the test.

For brevity, the test cases in this test area are summarized together based on
the operations they are testing.

All these test cases are included in the test case functest.tempest.osinterop of
OVP test suite.

8.1.13.1.1.5. Test Descriptions

8.1.13.1.1.5.1. API Used and Reference

Servers: https://docs.openstack.org/api-ref/compute/

	create server

	delete server

	list servers

	start server

	stop server

	update server

	get server action

	set server metadata

	update server metadata

	rebuild server

	create image

	delete image

	create keypair

	delete keypair

Block storage: https://docs.openstack.org/api-ref/block-storage/

	create volume

	delete volume

	attach volume to server

	detach volume from server

8.1.13.1.1.5.2. Test Case 1 - Image operations within the Compute API

8.1.13.1.1.5.2.1. Test case specification

tempest.api.compute.images.test_images_oneserver.ImagesOneServerTestJSON.test_create_delete_image
tempest.api.compute.images.test_images_oneserver.ImagesOneServerTestJSON.test_create_image_specify_multibyte_character_image_name

8.1.13.1.1.5.2.2. Test preconditions

	Compute server extension API

8.1.13.1.1.5.2.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.2.3.1. Test execution

	Test action 1: Create a server VM1 with an image IMG1 and wait for VM1 to reach ‘ACTIVE’ status

	Test action 2: Create a new server image IMG2 from VM1, specifying image name
and image metadata. Wait for IMG2 to reach ‘ACTIVE’ status, and then delete IMG2

	Test assertion 1: Verify IMG2 is created with correct image name and image
metadata; verify IMG1’s ‘minRam’ equals to IMG2’s ‘minRam’ and IMG2’s ‘minDisk’ equals
to IMG1’s ‘minDisk’ or VM1’s flavor disk size

	Test assertion 2: Verify IMG2 is deleted correctly

	Test action 3: Create another server IMG3 from VM1, specifying image name
with a 3 byte utf-8 character

	Test assertion 3: Verify IMG3 is created correctly

	Test action 4: Delete VM1, IMG1 and IMG3

8.1.13.1.1.5.2.3.2. Pass / fail criteria

This test evaluates the Compute API ability of creating image from server,
deleting image, creating server image with multi-byte character name.
Specifically, the test verifies that:

	Compute server create image and delete image APIs work correctly.

	Compute server image can be created with multi-byte character name.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.2.4. Post conditions

N/A

8.1.13.1.1.5.3. Test Case 2 - Action operation within the Compute API

8.1.13.1.1.5.3.1. Test case specification

tempest.api.compute.servers.test_instance_actions.InstanceActionsTestJSON.test_get_instance_action
tempest.api.compute.servers.test_instance_actions.InstanceActionsTestJSON.test_list_instance_actions

8.1.13.1.1.5.3.2. Test preconditions

	Compute server extension API

8.1.13.1.1.5.3.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.3.3.1. Test execution

	Test action 1: Create a server VM1 and wait for VM1 to reach ‘ACTIVE’ status

	Test action 2: Get the action details ACT_DTL of VM1

	Test assertion 1: Verify ACT_DTL’s ‘instance_uuid’ matches VM1’s ID and
ACT_DTL’s ‘action’ matched ‘create’

	Test action 3: Create a server VM2 and wait for VM2 to reach ‘ACTIVE’ status

	Test action 4: Delete server VM2 and wait for VM2 to reach termination

	Test action 5: Get the action list ACT_LST of VM2

	Test assertion 2: Verify ACT_LST’s length is 2 and two actions are ‘create’ and ‘delete’

	Test action 6: Delete VM1

8.1.13.1.1.5.3.3.2. Pass / fail criteria

This test evaluates the Compute API ability of getting the action details
of a provided server and getting the action list of a deleted server.
Specifically, the test verifies that:

	Get the details of the action in a specified server.

	List the actions that were performed on the specified server.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.3.4. Post conditions

N/A

8.1.13.1.1.5.4. Test Case 3 - Generate, import and delete SSH keys within Compute services

8.1.13.1.1.5.4.1. Test case specification

tempest.api.compute.servers.test_servers.ServersTestJSON.test_create_specify_keypair

8.1.13.1.1.5.4.2. Test preconditions

	Compute server extension API

8.1.13.1.1.5.4.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.4.3.1. Test execution

	Test action 1: Create a keypair KEYP1 and list all existing keypairs

	Test action 2: Create a server VM1 with KEYP1 and wait for VM1 to reach ‘ACTIVE’ status

	Test action 3: Show details of VM1

	Test assertion 1: Verify value of ‘key_name’ in the details equals to the name of KEYP1

	Test action 4: Delete KEYP1 and VM1

8.1.13.1.1.5.4.3.2. Pass / fail criteria

This test evaluates the Compute API ability of creating a keypair, listing
keypairs and creating a server with a provided keypair.
Specifically, the test verifies that:

	Compute create keypair and list keypair APIs work correctly.

	While creating a server, keypair can be specified.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.4.4. Post conditions

N/A

8.1.13.1.1.5.5. Test Case 4 - List supported versions of the Compute API

8.1.13.1.1.5.5.1. Test case specification

tempest.api.compute.test_versions.TestVersions.test_list_api_versions

8.1.13.1.1.5.5.2. Test preconditions

	Compute versions extension API

8.1.13.1.1.5.5.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.5.3.1. Test execution

	Test action 1: Get a List of versioned endpoints in the SUT

	Test assertion 1: Verify endpoints versions start at ‘v2.0’

8.1.13.1.1.5.5.3.2. Pass / fail criteria

This test evaluates the functionality of listing all available APIs to API consumers.
Specifically, the test verifies that:

	Compute list API versions API works correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.5.4. Post conditions

N/A

8.1.13.1.1.5.6. Test Case 5 - Quotas management in Compute API

8.1.13.1.1.5.6.1. Test case specification

tempest.api.compute.test_quotas.QuotasTestJSON.test_get_default_quotas
tempest.api.compute.test_quotas.QuotasTestJSON.test_get_quotas

8.1.13.1.1.5.6.2. Test preconditions

	Compute quotas extension API

8.1.13.1.1.5.6.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.6.3.1. Test execution

	Test action 1: Get the default quota set using the tenant ID

	Test assertion 1: Verify the default quota set ID matches tenant ID and
the default quota set is complete

	Test action 2: Get the quota set using the tenant ID

	Test assertion 2: Verify the quota set ID matches tenant ID and the quota
set is complete

	Test action 3: Get the quota set using the user ID

	Test assertion 3: Verify the quota set ID matches tenant ID and the quota
set is complete

8.1.13.1.1.5.6.3.2. Pass / fail criteria

This test evaluates the functionality of getting quota set.
Specifically, the test verifies that:

	User can get the default quota set for its tenant.

	User can get the quota set for its tenant.

	User can get the quota set using user ID.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.6.4. Post conditions

N/A

8.1.13.1.1.5.7. Test Case 6 - Basic server operations in the Compute API

8.1.13.1.1.5.7.1. Test case specification

This test case evaluates the Compute API ability of basic server operations, including:

	Create a server with admin password

	Create a server with a name that already exists

	Create a server with a numeric name

	Create a server with a really long metadata

	Create a server with a name whose length exceeding 255 characters

	Create a server with an unknown flavor

	Create a server with an unknown image ID

	Create a server with an invalid network UUID

	Delete a server using a server ID that exceeds length limit

	Delete a server using a negative server ID

	Get a nonexistent server details

	Verify the instance host name is the same as the server name

	Create a server with an invalid access IPv6 address

	List all existent servers

	Filter the (detailed) list of servers by flavor, image, server name, server status or limit

	Lock a server and try server stop, unlock and retry

	Get and delete metadata from a server

	List and set metadata for a server

	Reboot, rebuild, stop and start a server

	Update a server’s access addresses and server name

The reference is,

tempest.api.compute.servers.test_servers.ServersTestJSON.test_create_server_with_admin_password
tempest.api.compute.servers.test_servers.ServersTestJSON.test_create_with_existing_server_name
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_create_numeric_server_name
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_create_server_metadata_exceeds_length_limit
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_create_server_name_length_exceeds_256
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_create_with_invalid_flavor
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_create_with_invalid_image
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_create_with_invalid_network_uuid
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_delete_server_pass_id_exceeding_length_limit
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_delete_server_pass_negative_id
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_get_non_existent_server
tempest.api.compute.servers.test_create_server.ServersTestJSON.test_host_name_is_same_as_server_name
tempest.api.compute.servers.test_create_server.ServersTestManualDisk.test_host_name_is_same_as_server_name
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_invalid_ip_v6_address
tempest.api.compute.servers.test_create_server.ServersTestJSON.test_list_servers
tempest.api.compute.servers.test_create_server.ServersTestJSON.test_list_servers_with_detail
tempest.api.compute.servers.test_create_server.ServersTestManualDisk.test_list_servers
tempest.api.compute.servers.test_create_server.ServersTestManualDisk.test_list_servers_with_detail
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_detailed_filter_by_flavor
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_detailed_filter_by_image
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_detailed_filter_by_server_name
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_detailed_filter_by_server_status
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_detailed_limit_results
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_filter_by_flavor
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_filter_by_image
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_filter_by_limit
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_filter_by_server_name
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_filter_by_active_status
tempest.api.compute.servers.test_list_server_filters.ListServerFiltersTestJSON.test_list_servers_filtered_by_name_wildcard
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_changes_since_future_date
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_changes_since_invalid_date
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_limits_greater_than_actual_count
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_limits_pass_negative_value
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_limits_pass_string
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_non_existing_flavor
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_non_existing_image
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_by_non_existing_server_name
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_detail_server_is_deleted
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_status_non_existing
tempest.api.compute.servers.test_list_servers_negative.ListServersNegativeTestJSON.test_list_servers_with_a_deleted_server
tempest.api.compute.servers.test_server_actions.ServerActionsTestJSON.test_lock_unlock_server
tempest.api.compute.servers.test_server_metadata.ServerMetadataTestJSON.test_delete_server_metadata_item
tempest.api.compute.servers.test_server_metadata.ServerMetadataTestJSON.test_get_server_metadata_item
tempest.api.compute.servers.test_server_metadata.ServerMetadataTestJSON.test_list_server_metadata
tempest.api.compute.servers.test_server_metadata.ServerMetadataTestJSON.test_set_server_metadata
tempest.api.compute.servers.test_server_metadata.ServerMetadataTestJSON.test_set_server_metadata_item
tempest.api.compute.servers.test_server_metadata.ServerMetadataTestJSON.test_update_server_metadata
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_server_name_blank
tempest.api.compute.servers.test_server_actions.ServerActionsTestJSON.test_reboot_server_hard
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_reboot_non_existent_server
tempest.api.compute.servers.test_server_actions.ServerActionsTestJSON.test_rebuild_server
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_rebuild_deleted_server
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_rebuild_non_existent_server
tempest.api.compute.servers.test_server_actions.ServerActionsTestJSON.test_stop_start_server
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_stop_non_existent_server
tempest.api.compute.servers.test_servers.ServersTestJSON.test_update_access_server_address
tempest.api.compute.servers.test_servers.ServersTestJSON.test_update_server_name
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_update_name_of_non_existent_server
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_update_server_name_length_exceeds_256
tempest.api.compute.servers.test_servers_negative.ServersNegativeTestJSON.test_update_server_set_empty_name
tempest.api.compute.servers.test_create_server.ServersTestJSON.test_verify_created_server_vcpus
tempest.api.compute.servers.test_create_server.ServersTestJSON.test_verify_server_details
tempest.api.compute.servers.test_create_server.ServersTestManualDisk.test_verify_created_server_vcpus
tempest.api.compute.servers.test_create_server.ServersTestManualDisk.test_verify_server_details
tempest.api.compute.servers.test_delete_server.DeleteServersTestJSON.test_delete_active_server

8.1.13.1.1.5.7.2. Test preconditions

	Compute quotas extension API

8.1.13.1.1.5.7.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.7.3.1. Test execution

	Test action 1: Create a server VM1 with a admin password ‘testpassword’

	Test assertion 1: Verify the password returned in the response equals to ‘testpassword’

	Test action 2: Generate a VM name VM_NAME

	Test action 3: Create 2 servers VM2 and VM3 both with name VM_NAME

	Test assertion 2: Verify VM2’s ID is not equal to VM3’s ID, and VM2’s name equal to VM3’s name

	Test action 4: Create a server VM4 with a numeric name ‘12345’

	Test assertion 3: Verify creating VM4 failed

	Test action 5: Create a server VM5 with a long metadata ‘{‘a’: ‘b’ * 260}’

	Test assertion 4: Verify creating VM5 failed

	Test action 6: Create a server VM6 with name length exceeding 255 characters

	Test assertion 5: Verify creating VM6 failed

	Test action 7: Create a server VM7 with an unknown flavor ‘-1’

	Test assertion 6: Verify creating VM7 failed

	Test action 8: Create a server VM8 with an unknown image ID ‘-1’

	Test assertion 7: Verify creating VM8 failed

	Test action 9: Create a server VM9 with an invalid network UUID ‘a-b-c-d-e-f-g-h-i-j’

	Test assertion 8: Verify creating VM9 failed

	Test action 10: Delete a server using a server ID that exceeds system’s max integer limit

	Test assertion 9: Verify deleting server failed

	Test action 11: Delete a server using a server ID ‘-1’

	Test assertion 10: Verify deleting server failed

	Test action 12: Get a nonexistent server by using a random generated server ID

	Test assertion 11: Verify get server failed

	Test action 13: SSH into a provided server and get server’s hostname

	Test assertion 12: Verify server’s host name is the same as the server name

	Test action 14: SSH into a provided server and get server’s hostname (manual disk configuration)

	Test assertion 13: Verify server’s host name is the same as the server name (manual disk configuration)

	Test action 15: Create a server with an invalid access IPv6 address

	Test assertion 14: Verify creating server failed, a bad request error is returned in response

	Test action 16: List all existent servers

	Test assertion 15: Verify a provided server is in the server list

	Test action 17: List all existent servers in detail

	Test assertion 16: Verify a provided server is in the detailed server list

	Test action 18: List all existent servers (manual disk configuration)

	Test assertion 17: Verify a provided server is in the server list (manual disk configuration)

	Test action 19: List all existent servers in detail (manual disk configuration)

	Test assertion 18: Verify a provided server is in the detailed server list (manual disk configuration)

	Test action 20: List all existent servers in detail and filter the server list by flavor

	Test assertion 19: Verify the filtered server list is correct

	Test action 21: List all existent servers in detail and filter the server list by image

	Test assertion 20: Verify the filtered server list is correct

	Test action 22: List all existent servers in detail and filter the server list by server name

	Test assertion 21: Verify the filtered server list is correct

	Test action 23: List all existent servers in detail and filter the server list by server status

	Test assertion 22: Verify the filtered server list is correct

	Test action 24: List all existent servers in detail and filter the server list by display limit ‘1’

	Test assertion 23: Verify the length of filtered server list is 1

	Test action 25: List all existent servers and filter the server list by flavor

	Test assertion 24: Verify the filtered server list is correct

	Test action 26: List all existent servers and filter the server list by image

	Test assertion 25: Verify the filtered server list is correct

	Test action 27: List all existent servers and filter the server list by display limit ‘1’

	Test assertion 26: Verify the length of filtered server list is 1

	Test action 28: List all existent servers and filter the server list by server name

	Test assertion 27: Verify the filtered server list is correct

	Test action 29: List all existent servers and filter the server list by server status

	Test assertion 28: Verify the filtered server list is correct

	Test action 30: List all existent servers and filter the server list by server name wildcard

	Test assertion 29: Verify the filtered server list is correct

	Test action 31: List all existent servers and filter the server list by part of server name

	Test assertion 30: Verify the filtered server list is correct

	Test action 32: List all existent servers and filter the server list by a future change-since date

	Test assertion 31: Verify the filtered server list is empty

	Test action 33: List all existent servers and filter the server list by a invalid change-since date format

	Test assertion 32: Verify a bad request error is returned in the response

	Test action 34: List all existent servers and filter the server list by a
display limit value greater than the length of the server list

	Test assertion 33: Verify the length of filtered server list equals to the length of server list

	Test action 35: List all existent servers and filter the server list by display limit ‘-1’

	Test assertion 34: Verify a bad request error is returned in the response

	Test action 36: List all existent servers and filter the server list by a string type limit value ‘testing’

	Test assertion 35: Verify a bad request error is returned in the response

	Test action 37: List all existent servers and filter the server list by a nonexistent flavor

	Test assertion 36: Verify the filtered server list is empty

	Test action 38: List all existent servers and filter the server list by a nonexistent image

	Test assertion 37: Verify the filtered server list is empty

	Test action 39: List all existent servers and filter the server list by a nonexistent server name

	Test assertion 38: Verify the filtered server list is empty

	Test action 40: List all existent servers in detail and search the server list for a deleted server

	Test assertion 39: Verify the deleted server is not in the server list

	Test action 41: List all existent servers and filter the server list by a nonexistent server status

	Test assertion 40: Verify the filtered server list is empty

	Test action 42: List all existent servers in detail

	Test assertion 41: Verify a provided deleted server’s id is not in the server list

	Test action 43: Lock a provided server VM10 and retrieve the server’s status

	Test assertion 42: Verify VM10 is in ‘ACTIVE’ status

	Test action 44: Stop VM10

	Test assertion 43: Verify stop VM10 failed

	Test action 45: Unlock VM10 and stop VM10 again

	Test assertion 44: Verify VM10 is stopped and in ‘SHUTOFF’ status

	Test action 46: Start VM10

	Test assertion 45: Verify VM10 is in ‘ACTIVE’ status

	Test action 47: Delete metadata item ‘key1’ from a provided server

	Test assertion 46: Verify the metadata item is removed

	Test action 48: Get metadata item ‘key2’ from a provided server

	Test assertion 47: Verify the metadata item is correct

	Test action 49: List all metadata key/value pair for a provided server

	Test assertion 48: Verify all metadata are retrieved correctly

	Test action 50: Set metadata {‘meta2’: ‘data2’, ‘meta3’: ‘data3’} for a provided server

	Test assertion 49: Verify server’s metadata are replaced correctly

	Test action 51: Set metadata item nova’s value to ‘alt’ for a provided server

	Test assertion 50: Verify server’s metadata are set correctly

	Test action 52: Update metadata {‘key1’: ‘alt1’, ‘key3’: ‘value3’} for a provided server

	Test assertion 51: Verify server’s metadata are updated correctly

	Test action 53: Create a server with empty name parameter

	Test assertion 52: Verify create server failed

	Test action 54: Hard reboot a provided server

	Test assertion 53: Verify server is rebooted successfully

	Test action 55: Soft reboot a nonexistent server

	Test assertion 54: Verify reboot failed, an error is returned in the response

	Test action 56: Rebuild a provided server with new image, new server name and metadata

	Test assertion 55: Verify server is rebuilt successfully, server image, name and metadata are correct

	Test action 57: Create a server VM11

	Test action 58: Delete VM11 and wait for VM11 to reach termination

	Test action 59: Rebuild VM11 with another image

	Test assertion 56: Verify rebuild server failed, an error is returned in the response

	Test action 60: Rebuild a nonexistent server

	Test assertion 57: Verify rebuild server failed, an error is returned in the response

	Test action 61: Stop a provided server

	Test assertion 58: Verify server reaches ‘SHUTOFF’ status

	Test action 62: Start the stopped server

	Test assertion 59: Verify server reaches ‘ACTIVE’ status

	Test action 63: Stop a provided server

	Test assertion 60: Verify stop server failed, an error is returned in the response

	Test action 64: Create a server VM12 and wait it to reach ‘ACTIVE’ status

	Test action 65: Update VM12’s IPv4 and IPv6 access addresses

	Test assertion 61: Verify VM12’s access addresses have been updated correctly

	Test action 66: Create a server VM13 and wait it to reach ‘ACTIVE’ status

	Test action 67: Update VM13’s server name with non-ASCII characters ‘u00CDu00F1stu00E1u00F1cu00E9’

	Test assertion 62: Verify VM13’s server name has been updated correctly

	Test action 68: Update the server name of a nonexistent server

	Test assertion 63: Verify update server name failed, an ‘object not found’ error is returned in the response

	Test action 69: Update a provided server’s name with a 256-character long name

	Test assertion 64: Verify update server name failed, a bad request is returned in the response

	Test action 70: Update a provided server’s server name with an empty string

	Test assertion 65: Verify update server name failed, a bad request error is returned in the response

	Test action 71: Get the number of vcpus of a provided server

	Test action 72: Get the number of vcpus stated by the server’s flavor

	Test assertion 66: Verify that the number of vcpus reported by the server
matches the amount stated by the server’s flavor

	Test action 73: Create a server VM14

	Test assertion 67: Verify VM14’s server attributes are set correctly

	Test action 74: Get the number of vcpus of a provided server (manual disk configuration)

	Test action 75: Get the number of vcpus stated by the server’s flavor (manual disk configuration)

	Test assertion 68: Verify that the number of vcpus reported by the server
matches the amount stated by the server’s flavor (manual disk configuration)

	Test action 76: Create a server VM15 (manual disk configuration)

	Test assertion 69: Verify VM15’s server attributes are set correctly (manual disk configuration)

	Test action 77: Create a server VM16 and then delete it when its status is ‘ACTIVE’

	Test assertion 70: Verify VM16 is deleted successfully

	Test action 78: Delete all VMs created

8.1.13.1.1.5.7.3.2. Pass / fail criteria

This test evaluates the functionality of basic server operations.
Specifically, the test verifies that:

	If an admin password is provided on server creation, the server’s root password should be set to that password

	Create a server with a name that already exists is allowed

	Create a server with a numeric name or a name that exceeds the length limit is not allowed

	Create a server with a metadata that exceeds the length limit is not allowed

	Create a server with an invalid flavor, an invalid image or an invalid network UUID is not allowed

	Delete a server with a server ID that exceeds the length limit or a nonexistent server ID is not allowed

	Delete a server which status is ‘ACTIVE’ is allowed

	A provided server’s host name is the same as the server name

	Create a server with an invalid IPv6 access address is not allowed

	A created server is in the (detailed) list of servers

	Filter the (detailed) list of servers by flavor, image, server name, server status,
and display limit, respectively.

	Filter the list of servers by a future date

	Filter the list of servers by an invalid date format, a negative display limit or a string type
display limit value is not allowed

	Filter the list of servers by a nonexistent flavor, image, server name or server status is not allowed

	Deleted servers are not in the list of servers

	Deleted servers do not show by default in list of servers

	Locked server is not allowed to be stopped by non-admin user

	Can get and delete metadata from servers

	Can list, set and update server metadata

	Create a server with name parameter empty is not allowed

	Hard reboot a server and the server should be power cycled

	Reboot, rebuild and stop a nonexistent server is not allowed

	Rebuild a server using the provided image and metadata

	Stop and restart a server

	A server’s name and access addresses can be updated

	Update the name of a nonexistent server is not allowed

	Update name of a server to a name that exceeds the name length limit is not allowed

	Update name of a server to an empty string is not allowed

	The number of vcpus reported by the server matches the amount stated by the server’s flavor

	The specified server attributes are set correctly

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.7.4. Post conditions

N/A

8.1.13.1.1.5.8. Test Case 7 - Retrieve volume information through the Compute API

8.1.13.1.1.5.8.1. Test case specification

This test case evaluates the Compute API ability of attaching volume to a
specific server and retrieve volume information, the reference is,

tempest.api.compute.volumes.test_attach_volume.AttachVolumeTestJSON.test_attach_detach_volume
tempest.api.compute.volumes.test_attach_volume.AttachVolumeTestJSON.test_list_get_volume_attachments

8.1.13.1.1.5.8.2. Test preconditions

	Compute volume extension API

8.1.13.1.1.5.8.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.8.3.1. Test execution

	Test action 1: Create a server VM1 and a volume VOL1

	Test action 2: Attach VOL1 to VM1

	Test assertion 1: Stop VM1 successfully and wait VM1 to reach ‘SHUTOFF’ status

	Test assertion 2: Start VM1 successfully and wait VM1 to reach ‘ACTIVE’ status

	Test assertion 3: SSH into VM1 and verify VOL1 is in VM1’s root disk devices

	Test action 3: Detach VOL1 from VM1

	Test assertion 4: Stop VM1 successfully and wait VM1 to reach ‘SHUTOFF’ status

	Test assertion 5: Start VM1 successfully and wait VM1 to reach ‘ACTIVE’ status

	Test assertion 6: SSH into VM1 and verify VOL1 is not in VM1’s root disk devices

	Test action 4: Create a server VM2 and a volume VOL2

	Test action 5: Attach VOL2 to VM2

	Test action 6: List VM2’s volume attachments

	Test assertion 7: Verify the length of the list is 1 and VOL2 attachment is in the list

	Test action 7: Retrieve VM2’s volume information

	Test assertion 8: Verify volume information is correct

	Test action 8: Delete VM1, VM2, VOL1 and VOL2

8.1.13.1.1.5.8.3.2. Pass / fail criteria

This test evaluates the functionality of retrieving volume information.
Specifically, the test verifies that:

	Stop and start a server with an attached volume work correctly.

	Retrieve a server’s volume information correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.8.4. Post conditions

N/A

8.1.13.1.1.5.9. Test Case 8 - List Compute service availability zones with the Compute API

8.1.13.1.1.5.9.1. Test case specification

This test case evaluates the Compute API ability of listing availability zones
with a non admin user, the reference is,

tempest.api.compute.servers.test_availability_zone.AZV2TestJSON.test_get_availability_zone_list_with_non_admin_user

8.1.13.1.1.5.9.2. Test preconditions

	Compute volume extension API

8.1.13.1.1.5.9.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.9.3.1. Test execution

	Test action 1: List availability zones with a non admin user

	Test assertion 1: The list is not empty

8.1.13.1.1.5.9.3.2. Pass / fail criteria

This test evaluates the functionality of listing availability zones with a non admin user.
Specifically, the test verifies that:

	Non admin users can list availability zones.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.9.4. Post conditions

N/A

8.1.13.1.1.5.10. Test Case 9 - List Flavors within the Compute API

8.1.13.1.1.5.10.1. Test case specification

This test case evaluates the Compute API ability of listing flavors, the reference is,

tempest.api.compute.flavors.test_flavors.FlavorsV2TestJSON.test_list_flavors
tempest.api.compute.flavors.test_flavors.FlavorsV2TestJSON.test_list_flavors_with_detail

8.1.13.1.1.5.10.2. Test preconditions

	Compute volume extension API

8.1.13.1.1.5.10.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.10.3.1. Test execution

	Test action 1: List all flavors

	Test assertion 1: One given flavor is list in the all flavors’ list

	Test action 2: List all flavors with details

	Test assertion 2: One given flavor is list in the all flavors’ list

8.1.13.1.1.5.10.3.2. Pass / fail criteria

This test evaluates the functionality of listing flavors within the Compute API.
Specifically, the test verifies that:

	Can list flavors with/without details within the Compute API.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.10.4. Post conditions

N/A

8.1.13.1.1.5.11. Test Case 10 - Keypair operations within the Compute API

8.1.13.1.1.5.11.1. Test case specification

This test case evaluates the Compute API ability of creating keypair with type,
the reference is,

tempest.api.compute.keypairs.test_keypairs_v22.KeyPairsV22TestJSON.test_keypairsv22_create_list_show_with_type

8.1.13.1.1.5.11.2. Test preconditions

	Compute server extension API

8.1.13.1.1.5.11.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.1.5.11.3.1. Test execution

	Test action 1: Create a keypair with type ‘x509’ and a random name

	Test assertion 1: The keypair type received in the response body is equal to ‘x509’

	Test action 2: Show the details of this created keypair

	Test assertion 2: The keypair type received in the response body is equal to ‘x509’

	Test action 3: List all keypairs and find the one with the same name as given in test action 1

	Test assertion 3: The keypair type of this keypair is equal to ‘x509’

8.1.13.1.1.5.11.3.2. Pass / fail criteria

This test evaluates the functionality of keypair operations within the Compute API.
Specifically, the test verifies that:

	Can create keypair by specifying keypair type.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.1.5.11.4. Post conditions

N/A

8.1.13.1.2. VIM identity operations test specification

8.1.13.1.2.1. Scope

The VIM identity test area evaluates the ability of the system under test to
support VIM identity operations. The tests in this area will evaluate
API discovery operations within the Identity v3 API, auth operations within
the Identity API.

8.1.13.1.2.2. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	NFVi - Network Functions Virtualisation infrastructure

	VIM - Virtual Infrastructure Manager

8.1.13.1.2.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on an Pharos compliant infrastructure.

8.1.13.1.2.4. Test Area Structure

The test area is structured based on VIM identity operations. Each test case
is able to run independently, i.e. irrelevant of the state created by a previous test.

All these test cases are included in the test case functest.tempest.osinterop of
OVP test suite.

8.1.13.1.2.5. Dependency Description

The VIM identity operations test cases are a part of the OpenStack
interoperability tempest test cases. For Fraser based dovetail release, the
OpenStack interoperability guidelines (version 2018.11) is adopted, which is
valid for Mitaka, Newton, Ocata and Pike releases of Openstack.

8.1.13.1.2.6. Test Descriptions

8.1.13.1.2.6.1. Test Case 1 - API discovery operations within the Identity v3 API

8.1.13.1.2.6.1.1. Use case specification

tempest.api.identity.v3.test_api_discovery.TestApiDiscovery.test_api_version_resources
tempest.api.identity.v3.test_api_discovery.TestApiDiscovery.test_api_media_types
tempest.api.identity.v3.test_api_discovery.TestApiDiscovery.test_api_version_statuses

8.1.13.1.2.6.1.2. Test preconditions

None

8.1.13.1.2.6.1.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.2.6.1.3.1. Test execution

	Test action 1: Show the v3 identity api description, the test passes if keys
‘id’, ‘links’, ‘media-types’, ‘status’, ‘updated’ are all included in the description
response message.

	Test action 2: Get the value of v3 identity api ‘media-types’, the test passes if
api version 2 and version 3 are all included in the response.

	Test action 3: Show the v3 indentity api description, the test passes if ‘current’,
‘stable’, ‘experimental’, ‘supported’, ‘deprecated’ are all of the identity api ‘status’
values.

8.1.13.1.2.6.1.3.2. Pass / Fail criteria

This test case passes if all test action steps execute successfully and all assertions
are affirmed. If any test steps fails to execute successfully or any of the assertions
is not met, the test case fails.

8.1.13.1.2.6.1.4. Post conditions

None

8.1.13.1.2.6.2. Test Case 2 - Auth operations within the Identity API

8.1.13.1.2.6.2.1. Use case specification

tempest.api.identity.v3.test_tokens.TokensV3Test.test_create_token
tempest.api.identity.v3.test_tokens.TokensV3Test.test_validate_token

8.1.13.1.2.6.2.2. Test preconditions

None

8.1.13.1.2.6.2.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.2.6.2.3.1. Test execution

	Test action 1: Get the token by system credentials, the test passes if
the returned token_id is not empty and is string type.

	Test action 2: Get the user_id in getting token response message, the test
passes if it is equal to the user_id which is used to get token.

	Test action 3: Get the user_name in getting token response message, the test
passes if it is equal to the user_name which is used to get token.

	Test action 4: Get the method in getting token response message, the test
passes if it is equal to the password which is used to get token.

	Test action 5: Get the token by system credentials and show the token,
the test passes if the response bodies of the get and show operations are the same.

	Test action 6: Get the user_id in showing token response message, the test
passes if it is equal to the user_id which is used to get token.

	Test action 7: Get the username in showing token response message, the test
passes if it is equal to the username which is used to get token.

	Test action 8: Delete this token by non-admin compute client, the test passes
if it raises a NotFound exception.

8.1.13.1.2.6.2.3.2. Pass / Fail criteria

This test case passes if all test action steps execute successfully and all assertions
are affirmed. If any test steps fails to execute successfully or any of the assertions
is not met, the test case fails.

8.1.13.1.2.6.2.4. Post conditions

None

8.1.13.1.2.6.3. Test Case 3 - Catalog operations within the Identity API

8.1.13.1.2.6.3.1. Use case specification

tempest.api.identity.v3.test_catalog.IdentityCatalogTest.test_catalog_standardization

8.1.13.1.2.6.3.2. Test preconditions

None

8.1.13.1.2.6.3.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.2.6.3.3.1. Test execution

	Test action 1: Show all catalogs by non-admin catalog client, the test passes
if the catalog types getting in the show response message equal to the
standard service values. Standard catalog types of ‘keystone’, ‘nova’, ‘glance’ and
‘swift’ should be ‘identity’, ‘compute’, ‘image’ and ‘object-store’ respectively.

8.1.13.1.2.6.3.3.2. Pass / Fail criteria

This test case passes if all test action steps execute successfully and all assertions
are affirmed. If any test steps fails to execute successfully or any of the assertions
is not met, the test case fails.

8.1.13.1.2.6.3.4. Post conditions

None

8.1.13.1.3. VIM image operations test specification

8.1.13.1.3.1. Scope

The VIM image test area evaluates the ability of the system under test to support
VIM image operations. The test cases documented here are the Image API test cases
in the Openstack Interop guideline 2018.11 as implemented by the Refstack client.
These test cases will evaluate basic Openstack (as a VIM) image operations including
image creation, image list, image update and image deletion capabilities using Glance v2 API.

8.1.13.1.3.2. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	CRUD - Create, Read, Update, and Delete

	NFVi - Network Functions Virtualization infrastructure

	VIM - Virtual Infrastructure Manager

8.1.13.1.3.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.13.1.3.4. Test Area Structure

The test area is structured based on VIM image operations. Each test case is able
to run independently, i.e. irrelevant of the state created by a previous test.

For brevity, the test cases in this test area are summarized together based on
the operations they are testing.

All these test cases are included in the test case functest.tempest.osinterop of
OVP test suite.

8.1.13.1.3.5. Test Descriptions

8.1.13.1.3.5.1. API Used and Reference

Images: https://docs.openstack.org/api-ref/image/v2/

	create image

	delete image

	show image details

	show images

	show image schema

	show images schema

	upload binary image data

	add image tag

	delete image tag

8.1.13.1.3.5.2. Test Case 1 - Image get tests using the Glance v2 API

8.1.13.1.3.5.2.1. Test case specification

tempest.api.image.v2.test_images.ListUserImagesTest.test_get_image_schema
tempest.api.image.v2.test_images.ListUserImagesTest.test_get_images_schema
tempest.api.image.v2.test_images_negative.ImagesNegativeTest.test_get_delete_deleted_image
tempest.api.image.v2.test_images_negative.ImagesNegativeTest.test_get_image_null_id
tempest.api.image.v2.test_images_negative.ImagesNegativeTest.test_get_non_existent_image

8.1.13.1.3.5.2.2. Test preconditions

Glance is available.

8.1.13.1.3.5.2.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.3.5.2.3.1. Test execution

	Test action 1: Create 6 images and store their ids in a created images list.

	Test action 2: Use image v2 API to show image schema and check the body of the response.

	Test assertion 1: In the body of the response, the value of the key ‘name’ is ‘image’.

	Test action 3: Use image v2 API to show images schema and check the body of the response.

	Test assertion 2: In the body of the response, the value of the key ‘name’ is ‘images’.

	Test action 4: Create an image with name ‘test’, container_formats ‘bare’ and
disk_formats ‘raw’. Delete this image with its id and then try to show it with
its id. Delete this deleted image again with its id and check the API’s response code.

	Test assertion 3: The operations of showing and deleting a deleted image with its id
both get 404 response code.

	Test action 5: Use a null image id to show a image and check the API’s response code.

	Test assertion 4: The API’s response code is 404.

	Test action 6: Generate a random uuid and use it as the image id to show the image.

	Test assertion 5: The API’s response code is 404.

	Test action 7: Delete the 6 images with the stored ids. Show all images and check
whether the 6 images’ ids are not in the show list.

	Test assertion 6: The 6 images’ ids are not found in the show list.

8.1.13.1.3.5.2.3.2. Pass / Fail criteria

The first two test cases evaluate the ability to use Glance v2 API to show image
and images schema. The latter three test cases evaluate the ability to use Glance
v2 API to show images with a deleted image id, a null image id and a non-existing
image id. Specifically it verifies that:

	Glance image get API can show the image and images schema.

	Glance image get API can’t show an image with a deleted image id.

	Glance image get API can’t show an image with a null image id.

	Glance image get API can’t show an image with a non-existing image id.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.3.5.2.4. Post conditions

None

8.1.13.1.3.5.3. Test Case 2 - CRUD image operations in Images API v2

8.1.13.1.3.5.3.1. Test case specification

tempest.api.image.v2.test_images.ListUserImagesTest.test_list_no_params

8.1.13.1.3.5.3.2. Test preconditions

Glance is available.

8.1.13.1.3.5.3.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.3.5.3.3.1. Test execution

	Test action 1: Create 6 images and store their ids in a created images list.

	Test action 2: List all images and check whether the ids listed are in the created images list.

	Test assertion 1: The ids get from the list images API are in the created images list.

8.1.13.1.3.5.3.3.2. Pass / Fail criteria

This test case evaluates the ability to use Glance v2 API to list images.
Specifically it verifies that:

	Glance image API can show the images.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.3.5.3.4. Post conditions

None

8.1.13.1.3.5.4. Test Case 3 - Image list tests using the Glance v2 API

8.1.13.1.3.5.4.1. Test case specification

tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_container_format
tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_disk_format
tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_limit
tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_min_max_size
tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_size
tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_status
tempest.api.image.v2.test_images.ListUserImagesTest.test_list_images_param_visibility

8.1.13.1.3.5.4.2. Test preconditions

Glance is available.

8.1.13.1.3.5.4.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.3.5.4.3.1. Test execution

	Test action 1: Create 6 images with a random size ranging from 1024 to 4096 and
visibility ‘private’; set their (container_format, disk_format) pair to be
(ami, ami), (ami, ari), (ami, aki), (ami, vhd), (ami, vmdk) and (ami, raw);
store their ids in a list and upload the binary images data.

	Test action 2: Use Glance v2 API to list all images whose container_format is ‘ami’
and store the response details in a list.

	Test assertion 1: The list is not empty and all the values of container_format
in the list are ‘ami’.

	Test action 3: Use Glance v2 API to list all images whose disk_format is ‘raw’
and store the response details in a list.

	Test assertion 2: The list is not empty and all the values of disk_format
in the list are ‘raw’.

	Test action 4: Use Glance v2 API to list one image by setting limit to be 1 and
store the response details in a list.

	Test assertion 3: The length of the list is one.

	Test action 5: Use Glance v2 API to list images by setting size_min and size_max,
and store the response images’ sizes in a list. Choose the first image’s size as
the median, size_min is median-500 and size_max is median+500.

	Test assertion 4: All sizes in the list are no less than size_min and no more
than size_max.

	Test action 6: Use Glance v2 API to show the first created image with its id and
get its size from the response. Use Glance v2 API to list images whose size is equal
to this size and store the response details in a list.

	Test assertion 5: All sizes of the images in the list are equal to the size
used to list the images.

	Test action 7: Use Glance v2 API to list the images whose status is active and
store the response details in a list.

	Test assertion 6: All status of images in the list are active.

	Test action 8: Use Glance v2 API to list the images whose visibility is private and
store the response details in a list.

	Test assertion 7: All images’ values of visibility in the list are private.

	Test action 9: Delete the 6 images with the stored ids. Show images and check whether
the 6 ids are not in the show list.

	Test assertion 8: The stored 6 ids are not found in the show list.

8.1.13.1.3.5.4.3.2. Pass / Fail criteria

This test case evaluates the ability to use Glance v2 API to list images with
different parameters. Specifically it verifies that:

	Glance image API can show the images with the container_format.

	Glance image API can show the images with the disk_format.

	Glance image API can show the images by setting a limit number.

	Glance image API can show the images with the size_min and size_max.

	Glance image API can show the images with the size.

	Glance image API can show the images with the status.

	Glance image API can show the images with the visibility type.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.3.5.4.4. Post conditions

None

8.1.13.1.3.5.5. Test Case 4 - Image update tests using the Glance v2 API

8.1.13.1.3.5.5.1. Test case specification

tempest.api.image.v2.test_images.BasicOperationsImagesTest.test_update_image
tempest.api.image.v2.test_images_tags.ImagesTagsTest.test_update_delete_tags_for_image
tempest.api.image.v2.test_images_tags_negative.ImagesTagsNegativeTest.test_update_tags_for_non_existing_image

8.1.13.1.3.5.5.2. Test preconditions

Glance is available.

8.1.13.1.3.5.5.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.3.5.5.3.1. Test execution

	Test action 1: Create an image with container_formats ‘ami’, disk_formats ‘ami’
and visibility ‘private’ and store its id returned in the response. Check whether
the status of the created image is ‘queued’.

	Test assertion 1: The status of the created image is ‘queued’.

	Test action 2: Use the stored image id to upload the binary image data and update
this image’s name. Show this image with the stored id. Check if the stored id and
name used to update the image are equal to the id and name in the show list.

	Test assertion 2: The id and name returned in the show list are equal to
the stored id and name used to update the image.

	Test action 3: Create an image with container_formats ‘bare’, disk_formats ‘raw’
and visibility ‘private’ and store its id returned in the response.

	Test action 4: Use the stored id to add a tag. Show the image with the stored id
and check if the tag used to add is in the image’s tags returned in the show list.

	Test assertion 3: The tag used to add into the image is in the show list.

	Test action 5: Use the stored id to delete this tag. Show the image with the
stored id and check if the tag used to delete is not in the show list.

	Test assertion 4: The tag used to delete from the image is not in the show list.

	Test action 6: Generate a random uuid as the image id. Use the image id to add a tag
into the image’s tags.

	Test assertion 5: The API’s response code is 404.

	Test action 7: Delete the images created in test action 1 and 3. Show the images
and check whether the ids are not in the show list.

	Test assertion 6: The two ids are not found in the show list.

8.1.13.1.3.5.5.3.2. Pass / Fail criteria

This test case evaluates the ability to use Glance v2 API to update images with
different parameters. Specifically it verifies that:

	Glance image API can update image’s name with the existing image id.

	Glance image API can update image’s tags with the existing image id.

	Glance image API can’t update image’s tags with a non-existing image id.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.3.5.5.4. Post conditions

None

8.1.13.1.3.5.6. Test Case 5 - Image deletion tests using the Glance v2 API

8.1.13.1.3.5.6.1. Test case specification

tempest.api.image.v2.test_images.BasicOperationsImagesTest.test_delete_image
tempest.api.image.v2.test_images_negative.ImagesNegativeTest.test_delete_image_null_id
tempest.api.image.v2.test_images_negative.ImagesNegativeTest.test_delete_non_existing_image
tempest.api.image.v2.test_images_tags_negative.ImagesTagsNegativeTest.test_delete_non_existing_tag

8.1.13.1.3.5.6.2. Test preconditions

Glance is available.

8.1.13.1.3.5.6.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.3.5.6.3.1. Test execution

	Test action 1: Create an image with container_formats ‘ami’, disk_formats ‘ami’
and visibility ‘private’. Use the id of the created image to delete the image.
List all images and check whether this id is in the list.

	Test assertion 1: The id of the created image is not found in the list
of all images after the deletion operation.

	Test action 2: Delete images with a null id and check the API’s response code.

	Test assertion 2: The API’s response code is 404.

	Test action 3: Generate a random uuid and delete images with this uuid as image id.
Check the API’s response code.

	Test assertion 3: The API’s response code is 404.

	Test action 4: Create an image with container_formats ‘bare’, disk_formats ‘raw’
and visibility ‘private’. Delete this image’s tag with the image id and a random tag
Check the API’s response code.

	Test assertion 4: The API’s response code is 404.

	Test action 5: Delete the images created in test action 1 and 4. List all images
and check whether the ids are in the list.

	Test assertion 5: The two ids are not found in the list.

8.1.13.1.3.5.6.3.2. Pass / Fail criteria

The first three test cases evaluate the ability to use Glance v2 API to delete images
with an existing image id, a null image id and a non-existing image id. The last one
evaluates the ability to use the API to delete a non-existing image tag.
Specifically it verifies that:

	Glance image deletion API can delete the image with an existing id.

	Glance image deletion API can’t delete an image with a null image id.

	Glance image deletion API can’t delete an image with a non-existing image id.

	Glance image deletion API can’t delete an image tag with a non-existing image tag.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.3.5.6.4. Post conditions

None

8.1.13.1.4. VIM network operations test specification

8.1.13.1.4.1. Scope

The VIM network test area evaluates the ability of the system under test to support
VIM network operations. The test cases documented here are the network API test cases
in the Openstack Interop guideline 2018.11 as implemented by the Refstack client.
These test cases will evaluate basic Openstack (as a VIM) network operations including
basic CRUD operations on L2 networks, L2 network ports and security groups.

8.1.13.1.4.2. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	CRUD - Create, Read, Update and Delete

	NFVi - Network Functions Virtualization infrastructure

	VIM - Virtual Infrastructure Manager

8.1.13.1.4.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.13.1.4.4. Test Area Structure

The test area is structured based on VIM network operations. Each test case is able
to run independently, i.e. irrelevant of the state created by a previous test.
Specifically, every test performs clean-up operations which return the system to
the same state as before the test.

For brevity, the test cases in this test area are summarized together based on
the operations they are testing.

All these test cases are included in the test case functest.tempest.osinterop of
OVP test suite.

8.1.13.1.4.5. Test Descriptions

8.1.13.1.4.5.1. API Used and Reference

Network: https://docs.openstack.org/api-ref/network/v2/index.html

	create network

	update network

	list networks

	show network details

	delete network

	create subnet

	update subnet

	list subnets

	show subnet details

	delete subnet

	create port

	bulk create ports

	update port

	list ports

	show port details

	delete port

	create security group

	update security group

	list security groups

	show security group

	delete security group

	create security group rule

	list security group rules

	show security group rule

	delete security group rule

8.1.13.1.4.5.2. Test Case 1 - Basic CRUD operations on L2 networks and L2 network ports

8.1.13.1.4.5.2.1. Test case specification

tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_with_allocation_pools
tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_with_dhcp_enabled
tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_with_gw
tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_with_gw_and_allocation_pools
tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_with_host_routes_and_dns_nameservers
tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_without_gateway
tempest.api.network.test_networks.NetworksTest.test_create_delete_subnet_all_attributes
tempest.api.network.test_networks.NetworksTest.test_create_update_delete_network_subnet
tempest.api.network.test_networks.NetworksTest.test_delete_network_with_subnet
tempest.api.network.test_networks.NetworksTest.test_external_network_visibility
tempest.api.network.test_networks.NetworksTest.test_list_networks
tempest.api.network.test_networks.NetworksTest.test_list_networks_fields
tempest.api.network.test_networks.NetworksTest.test_list_subnets
tempest.api.network.test_networks.NetworksTest.test_list_subnets_fields
tempest.api.network.test_networks.NetworksTest.test_show_network
tempest.api.network.test_networks.NetworksTest.test_show_network_fields
tempest.api.network.test_networks.NetworksTest.test_show_subnet
tempest.api.network.test_networks.NetworksTest.test_show_subnet_fields
tempest.api.network.test_networks.NetworksTest.test_update_subnet_gw_dns_host_routes_dhcp
tempest.api.network.test_ports.PortsTestJSON.test_create_bulk_port
tempest.api.network.test_ports.PortsTestJSON.test_create_port_in_allowed_allocation_pools
tempest.api.network.test_ports.PortsTestJSON.test_create_update_delete_port
tempest.api.network.test_ports.PortsTestJSON.test_list_ports
tempest.api.network.test_ports.PortsTestJSON.test_list_ports_fields
tempest.api.network.test_ports.PortsTestJSON.test_port_list_filter_by_router_id
tempest.api.network.test_ports.PortsTestJSON.test_show_port
tempest.api.network.test_ports.PortsTestJSON.test_show_port_fields

8.1.13.1.4.5.2.2. Test preconditions

Neutron is available.

8.1.13.1.4.5.2.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.4.5.2.3.1. Test execution

	Test action 1: Create a network and create a subnet of this network by setting
allocation_pools, then check the details of the subnet and delete the subnet and network

	Test assertion 1: The allocation_pools returned in the response equals to the one used
to create the subnet, and the network and subnet ids are not found after deletion

	Test action 2: Create a network and create a subnet of this network by setting
enable_dhcp “True”, then check the details of the subnet and delete the subnet and network

	Test assertion 2: The enable_dhcp returned in the response is “True” and the network
and subnet ids are not found after deletion

	Test action 3: Create a network and create a subnet of this network by setting
gateway_ip, then check the details of the subnet and delete the subnet and network

	Test assertion 3: The gateway_ip returned in the response equals to the one used to
create the subnet, and the network and subnet ids are not found after deletion

	Test action 4: Create a network and create a subnet of this network by setting allocation_pools
and gateway_ip, then check the details of the subnet and delete the subnet and network

	Test assertion 4: The allocation_pools and gateway_ip returned in the response equal to
the ones used to create the subnet, and the network and subnet ids are not found after deletion

	Test action 5: Create a network and create a subnet of this network by setting host_routes and
dns_nameservers, then check the details of the subnet and delete the subnet and network

	Test assertion 5: The host_routes and dns_nameservers returned in the response equal to
the ones used to create the subnet, and the network and subnet ids are not found after deletion

	Test action 6: Create a network and create a subnet of this network without setting
gateway_ip, then delete the subnet and network

	Test assertion 6: The network and subnet ids are not found after deletion

	Test action 7: Create a network and create a subnet of this network by setting enable_dhcp “true”,
gateway_ip, ip_version, cidr, host_routes, allocation_pools and dns_nameservers,
then check the details of the subnet and delete the subnet and network

	Test assertion 7: The values returned in the response equal to the ones used to
create the subnet, and the network and subnet ids are not found after deletion

	Test action 8: Create a network and update this network’s name, then create a subnet and update
this subnet’s name, delete the subnet and network

	Test assertion 8: The network’s status and subnet’s status are both ‘ACTIVE’ after creation,
their names equal to the new names used to update, and the network and subnet ids are not
found after deletion

	Test action 9: Create a network and create a subnet of this network, then delete this network

	Test assertion 9: The subnet has also been deleted after deleting the network

	Test action 10: List all external networks, find the one with the same public_network_id
as defined in tempest.conf and list its subnets

	Test assertion 10: The external network can be found, no internal network got by the
list operation, if this external network is shared, the subnets list is not empty,
otherwise, it should be empty

	Test action 11: Create a network and list all networks

	Test assertion 11: The network created is found in the list

	Test action 12: Create a network and list networks with the id and name of the created network

	Test assertion 12: The id and name of the list network equal to the created network’s id and name

	Test action 13: Create a network and create a subnet of this network, then list all subnets

	Test assertion 13: The subnet created is found in the list

	Test action 14: Create a network and create a subnet of this network, then list subnets with
the id and network_id of the created subnet

	Test assertion 14: The id and network_id of the list subnet equal to the created subnet

	Test action 15: Create a network and show network’s details with the id of the created network

	Test assertion 15: The id and name returned in the response equal to the created network’s id and name

	Test action 16: Create a network and just show network’s id and name info with the id of the created network

	Test assertion 16: The keys returned in the response are only id and name, and the values
of all the keys equal to network’s id and name

	Test action 17: Create a network and create a subnet of this network, then show subnet’s details
with the id of the created subnet

	Test assertion 17: The id and cidr info returned in the response equal to the created
subnet’s id and cidr

	Test action 18: Create a network and create a subnet of this network, then show subnet’s id and
network_id info with the id of the created subnet

	Test assertion 18: The keys returned in the response are just id and network_id, and the values
of all the keys equal to subnet’s id and network_id

	Test action 19: Create a network and create a subnet of this network, then update subnet’s
name, host_routes, dns_nameservers and gateway_ip

	Test assertion 19: The name, host_routes, dns_nameservers and gateway_ip returned in the
response equal to the values used to update the subnet

	Test action 20: Create 2 networks and bulk create 2 ports with the ids of the created networks

	Test assertion 20: The network_id of each port equals to the one used to create the port and
the admin_state_up of each port is True

	Test action 21: Create a network and create a subnet of this network by setting allocation_pools,
then create a port with the created network’s id

	Test assertion 21: The ip_address of the created port is in the range of the allocation_pools

	Test action 22: Create a network and create a port with its id, then update the port’s name and
set its admin_state_up to be False

	Test assertion 22: The name returned in the response equals to the name used to update
the port and the port’s admin_state_up is False

	Test action 23: Create a network and create a port with its id, then list all ports

	Test assertion 23: The created port is found in the list

	Test action 24: Create a network and create a port with its id, then list ports with the id
and mac_address of the created port

	Test assertion 24: The created port is found in the list

	Test action 25: Create a network and create a subnet, port with its id, create a router
and add this port as this router’s interface, then list ports with this router id

	Test assertion 25: The number of the ports list is 1, the port id and device_id
getting with the list operation are the same as the ones got when creating them

	Test action 26: Create a network and create a port with its id, then show the port’s details

	Test assertion 26: The key ‘id’ is in the details

	Test action 27: Create a network and create a port with its id, then show the port’s id
and mac_address info with the port’s id

	Test assertion 27: The keys returned in the response are just id and mac_address,
and the values of all the keys equal to port’s id and mac_address

8.1.13.1.4.5.2.3.2. Pass / Fail criteria

These test cases evaluate the ability of basic CRUD operations on L2 networks and L2 network ports.
Specifically it verifies that:

	Subnets can be created successfully by setting different parameters.

	Subnets can be updated after being created.

	Ports can be bulk created with network ids.

	Port’s security group(s) can be updated after being created.

	Networks/subnets/ports can be listed with their ids and other parameters.

	All details or special fields’ info of networks/subnets/ports can be shown with their ids.

	Networks/subnets/ports can be successfully deleted.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.4.5.2.4. Post conditions

N/A

8.1.13.1.4.5.3. Test Case 2 - Basic CRUD operations on security groups

8.1.13.1.4.5.3.1. Test case specification

tempest.api.network.test_security_groups.SecGroupTest.test_create_list_update_show_delete_security_group
tempest.api.network.test_security_groups.SecGroupTest.test_create_security_group_rule_with_additional_args
tempest.api.network.test_security_groups.SecGroupTest.test_create_security_group_rule_with_icmp_type_code
tempest.api.network.test_security_groups.SecGroupTest.test_create_security_group_rule_with_protocol_integer_value
tempest.api.network.test_security_groups.SecGroupTest.test_create_security_group_rule_with_remote_group_id
tempest.api.network.test_security_groups.SecGroupTest.test_create_security_group_rule_with_remote_ip_prefix
tempest.api.network.test_security_groups.SecGroupTest.test_create_show_delete_security_group_rule
tempest.api.network.test_security_groups.SecGroupTest.test_list_security_groups
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_additional_default_security_group_fails
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_duplicate_security_group_rule_fails
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_security_group_rule_with_bad_ethertype
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_security_group_rule_with_bad_protocol
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_security_group_rule_with_bad_remote_ip_prefix
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_security_group_rule_with_invalid_ports
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_security_group_rule_with_non_existent_remote_groupid
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_create_security_group_rule_with_non_existent_security_group
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_delete_non_existent_security_group
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_show_non_existent_security_group
tempest.api.network.test_security_groups_negative.NegativeSecGroupTest.test_show_non_existent_security_group_rule

8.1.13.1.4.5.3.2. Test preconditions

Neutron is available.

8.1.13.1.4.5.3.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.4.5.3.3.1. Test execution

	Test action 1: Create a security group SG1, list all security groups, update the name and description
of SG1, show details of SG1 and delete SG1

	Test assertion 1: SG1 is in the list, the name and description of SG1 equal to the ones used to
update it, the name and description of SG1 shown in the details equal to the ones used to update it,
and SG1’s id is not found after deletion

	Test action 2: Create a security group SG1, and create a rule with protocol ‘tcp’,
port_range_min and port_range_max

	Test assertion 2: The values returned in the response equal to the ones used to create the rule

	Test action 3: Create a security group SG1, and create a rule with protocol ‘icmp’ and icmp_type_codes

	Test assertion 3: The values returned in the response equal to the ones used to create the rule

	Test action 4: Create a security group SG1, and create a rule with protocol ‘17’

	Test assertion 4: The values returned in the response equal to the ones used to create the rule

	Test action 5: Create a security group SG1, and create a rule with protocol ‘udp’, port_range_min,
port_range_max and remote_group_id

	Test assertion 5: The values returned in the response equal to the ones used to create the rule

	Test action 6: Create a security group SG1, and create a rule with protocol ‘tcp’, port_range_min,
port_range_max and remote_ip_prefix

	Test assertion 6: The values returned in the response equal to the ones used to create the rule

	Test action 7: Create a security group SG1, create 3 rules with protocol ‘tcp’, ‘udp’ and ‘icmp’
respectively, show details of each rule, list all rules and delete all rules

	Test assertion 7: The values in the shown details equal to the ones used to create the rule,
all rules are found in the list, and all rules are not found after deletion

	Test action 8: List all security groups

	Test assertion 8: There is one default security group in the list

	Test action 9: Create a security group whose name is ‘default’

	Test assertion 9: Failed to create this security group because of name conflict

	Test action 10: Create a security group SG1, create a rule with protocol ‘tcp’, port_range_min
and port_range_max, and create another tcp rule with the same parameters

	Test assertion 10: Failed to create this security group rule because of duplicate protocol

	Test action 11: Create a security group SG1, and create a rule with ethertype ‘bad_ethertype’

	Test assertion 11: Failed to create this security group rule because of bad ethertype

	Test action 12: Create a security group SG1, and create a rule with protocol ‘bad_protocol_name’

	Test assertion 12: Failed to create this security group rule because of bad protocol

	Test action 13: Create a security group SG1, and create a rule with remote_ip_prefix ‘92.168.1./24’,
‘192.168.1.1/33’, ‘bad_prefix’ and ‘256’ respectively

	Test assertion 13: Failed to create these security group rules because of bad remote_ip_prefix

	Test action 14: Create a security group SG1, and create a tcp rule with (port_range_min, port_range_max)
(-16, 80), (80, 79), (80, 65536), (None, 6) and (-16, 65536) respectively

	Test assertion 14: Failed to create these security group rules because of bad ports

	Test action 15: Create a security group SG1, and create a tcp rule with remote_group_id ‘bad_group_id’
and a random uuid respectively

	Test assertion 15: Failed to create these security group rules because of nonexistent remote_group_id

	Test action 16: Create a security group SG1, and create a rule with a random uuid as security_group_id

	Test assertion 16: Failed to create these security group rules because of nonexistent security_group_id

	Test action 17: Generate a random uuid and use this id to delete security group

	Test assertion 17: Failed to delete security group because of nonexistent security_group_id

	Test action 18: Generate a random uuid and use this id to show security group

	Test assertion 18: Failed to show security group because of nonexistent id of security group

	Test action 19: Generate a random uuid and use this id to show security group rule

	Test assertion 19: Failed to show security group rule because of nonexistent id of security group rule

8.1.13.1.4.5.3.3.2. Pass / Fail criteria

These test cases evaluate the ability of Basic CRUD operations on security groups and security group rules.
Specifically it verifies that:

	Security groups can be created, list, updated, shown and deleted.

	Security group rules can be created with different parameters, list, shown and deleted.

	Cannot create an additional default security group.

	Cannot create a duplicate security group rules.

	Cannot create security group rules with bad ethertype, protocol, remote_ip_prefix, ports,
remote_group_id and security_group_id.

	Cannot show or delete security groups or security group rules with nonexistent ids.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.4.5.3.4. Post conditions

N/A

8.1.13.1.4.5.4. Test Case 3 - CRUD operations on subnet pools

8.1.13.1.4.5.4.1. Test case specification

tempest.api.network.test_subnetpools_extensions.SubnetPoolsTestJSON.test_create_list_show_update_delete_subnetpools

8.1.13.1.4.5.4.2. Test preconditions

Neutron is available.

8.1.13.1.4.5.4.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.4.5.4.3.1. Test execution

	Test action 1: Create a subnetpool SNP1 with a specific name and get the name from the response body

	Test assertion 1: The name got from the body is the same as the name used to create SNP1

	Test action 2: Show SNP1 and get the name from the response body

	Test assertion 2: The name got from the body is the same as the name used to create SNP1

	Test action 3: Update the name of SNP1 and get the new name from the response body

	Test assertion 3: The name got from the body is the same as the name used to update SNP1

	Test action 4: Delete SNP1

8.1.13.1.4.5.4.3.2. Pass / Fail criteria

These test cases evaluate the ability of Basic CRUD operations on subnetpools.
Specifically it verifies that:

	Subnetpools can be created, updated, shown and deleted.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.4.5.4.4. Post conditions

N/A

8.1.13.1.4.5.5. Test Case 4 - CRUD operations on routers

8.1.13.1.4.5.5.1. Test case specification

tempest.api.network.test_routers.RoutersTest.test_add_multiple_router_interfaces
tempest.api.network.test_routers.RoutersTest.test_add_remove_router_interface_with_port_id
tempest.api.network.test_routers.RoutersTest.test_add_remove_router_interface_with_subnet_id
tempest.api.network.test_routers.RoutersTest.test_create_show_list_update_delete_router
tempest.api.network.test_routers.RoutersTest.test_update_delete_extra_route
tempest.api.network.test_routers.RoutersTest.test_update_router_admin_state
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_add_router_interfaces_on_overlapping_subnets_returns_400
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_delete_non_existent_router_returns_404
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_router_add_gateway_invalid_network_returns_404
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_router_add_gateway_net_not_external_returns_400
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_router_remove_interface_in_use_returns_409
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_show_non_existent_router_returns_404
tempest.api.network.test_routers_negative.RoutersNegativeTest.test_update_non_existent_router_returns_404

8.1.13.1.4.5.5.2. Test preconditions

Neutron is available.

8.1.13.1.4.5.5.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.4.5.5.3.1. Test execution

	Test action 1: Create 2 networks NET1 and NET2, create SubNet1 of NET1 and SubNet2 with cidr of NET2,
create a router R1, add SubNet1 and SubNet2 to be R1’s interfaces and get port details

	Test assertion 1: The device_id and subnet_id of the port equals to the router id
and subnet id getting from the creating response body

	Test action 2: Create a network NET1, create SubNet1 of NET1, create P1 of NET1, create a router R1,
add P1 to be its interface, store the response body B1, show P1 and store the response body B2 and
remove the interface with port id

	Test assertion 2: B1 includes keys ‘subnet_id’ and ‘port_id’, ‘device_id’ of B2 equals to router id

	Test action 3: Create a network NET1, create SubNet1 of NET1, create a router R1, add SubNet1 to be its
interface, store the response body B1, show port details with ‘port_id’ in B1

	Test assertion 3: B1 includes keys ‘subnet_id’ and ‘port_id’, ‘device_id’ equals to router id

	Test action 4: Create a router R1 with name, admin_state_up False and external_network_id Ext-Net,
store the request body B1, show R1 with ‘id’ in B1, list all routers, update R1’s name

	Test assertion 4: ‘name’, ‘admin_state_up’ and ‘network_id’ in B1 equal to the name, False and Ext-Net,
‘name’ in show details equals to ‘name’ in B1, ‘network_id’ in show details equals to Ext-Net,
R1 is in the router list, the ‘name’ has been updated

	Test action 5: Create a router R1 with admin_state_up=True, create 4 networks and 4 subnets with different
cidr, add these 4 subnets to R1 as its interfaces, update R1 by given routes and show R1, delete extra
route of R1 and then show R1

	Test assertion 5: The number of routes queals to 4 and routes is empty after deletion

	Test action 6: Create a router R1, update ‘admin_state_up’ of R1 to be True

	Test assertion 6: ‘admin_state_up’ of R1 is False, ‘admin_state_up’ of R1 is True after updating

	Test action 7: Create 2 networks NET1 and NET2, create SubNet1 of NET1 and SubNet2 of NET2,
create a router R1, add SubNet1 to be R1’s interface and then trying to add SubNet2 to be R1’s interface

	Test assertion 7: It raises a BadRequest exception when trying to add SubNet2

	Test action 8: Try to delete router with a random name

	Test assertion 8: It raises a NotFound exception when trying delete operation

	Test action 9: Create a router R1 and try to update it with wrong external_gateway_info

	Test assertion 9: It raises a NotFound exception when trying to update R1

	Test action 10: Create an internal network NET1, create SubNet1 with cidr of NET1,
create a router R1 and try to update it with NET1 as external_gateway_info

	Test assertion 10: It raises a BadRequest exception when trying to update R1

	Test action 11: Create a network NET1, create SubNet1 of NET1, create a router R1, add SubNet1 to
the interface of R1 and try to delete R1

	Test assertion 11: It raises a Conflict exception when trying to delete R1

	Test action 12: Try to show router with a random name

	Test assertion 12: It raises a NotFound exception when trying to show router

	Test action 13: Try to update router with a random name

	Test assertion 13: It raises a NotFound exception when trying to update router

8.1.13.1.4.5.5.3.2. Pass / Fail criteria

These test cases evaluate the ability of Basic CRUD operations on routers.
Specifically it verifies that:

	Routers can be created, updated, shown and deleted.

	Can not show, update and delete non existent router.

	Can not remove interface in use.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.4.5.5.4. Post conditions

N/A

8.1.13.1.4.5.6. Test Case 5 - List versions within Network API

8.1.13.1.4.5.6.1. Test case specification

tempest.api.network.test_versions.NetworksApiDiscovery.test_api_version_resources

8.1.13.1.4.5.6.2. Test preconditions

Neutron is available.

8.1.13.1.4.5.6.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.4.5.6.3.1. Test execution

	Test action 1: List network API versions

	Test assertion 1: The network API version is ‘v2.0’

8.1.13.1.4.5.6.3.2. Pass / Fail criteria

This test case evaluates the ability of listing network API versions.
Specifically it verifies that:

	The network API version is ‘v2.0’.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.4.5.6.4. Post conditions

N/A

8.1.13.1.5. VIM volume operations test specification

8.1.13.1.5.1. Scope

The VIM volume operations test area evaluates the ability of the system under
test to support VIM volume operations. The test cases documented here are the
volume API test cases in the OpenStack Interop guideline 2018.11 as implemented
by the RefStack client. These test cases will evaluate basic OpenStack (as a VIM)
volume operations, including:

	Volume attach and detach operations

	Volume service availability zone operations

	Volume cloning operations

	Image copy-to-volume operations

	Volume creation and deletion operations

	Volume service extension listing

	Volume metadata operations

	Volume snapshot operations

8.1.13.1.5.2. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	NFVi - Network Functions Virtualization infrastructure

	SUT - System Under Test

	VIM - Virtual Infrastructure Manager

	VM - Virtual Machine

8.1.13.1.5.3. System Under Test (SUT)

The system under test is assumed to be the NFVI and VIM deployed with a Pharos compliant infrastructure.

8.1.13.1.5.4. Test Area Structure

The test area is structured based on VIM volume API operations. Each test case is
able to run independently, i.e. irrelevant of the state created by a previous test.
Specifically, every test performs clean-up operations which return the system to
the same state as before the test.

For brevity, the test cases in this test area are summarized together based on
the operations they are testing.

All these test cases are included in the test case functest.tempest.osinterop of
OVP test suite.

8.1.13.1.5.5. Test Descriptions

8.1.13.1.5.5.1. API Used and Reference

Block storage: https://docs.openstack.org/api-ref/block-storage/

	create volume

	delete volume

	update volume

	attach volume to server

	detach volume from server

	create volume metadata

	update volume metadata

	delete volume metadata

	list volume

	create snapshot

	update snapshot

	delete snapshot

8.1.13.1.5.5.2. Test Case 1 - Volume service availability zone operations with the Cinder v2 or v3 API

8.1.13.1.5.5.2.1. Test case specification

tempest.api.volume.test_availability_zone.AvailabilityZoneTestJSON.test_get_availability_zone_list

8.1.13.1.5.5.2.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.2.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.2.3.1. Test execution

	Test action 1: List all existent availability zones

	Test assertion 1: Verify the availability zone list length is greater than 0

8.1.13.1.5.5.2.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of listing availability zones.
Specifically, the test verifies that:

	Availability zones can be listed.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.2.4. Post conditions

N/A

8.1.13.1.5.5.3. Test Case 2 - Volume cloning operations with the Cinder v2 or v3 API

8.1.13.1.5.5.3.1. Test case specification

tempest.api.volume.test_volumes_get.VolumesGetTest.test_volume_create_get_update_delete_as_clone

8.1.13.1.5.5.3.2. Test preconditions

	Volume extension API

	Cinder volume clones feature is enabled

8.1.13.1.5.5.3.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.3.3.1. Test execution

	Test action 1: Create a volume VOL1

	Test action 2: Create a volume VOL2 from source volume VOL1 with a specific name and metadata

	Test action 2: Wait for VOL2 to reach ‘available’ status

	Test assertion 1: Verify the name of VOL2 is correct

	Test action 3: Retrieve VOL2’s detail information

	Test assertion 2: Verify the retrieved volume name, ID and metadata are the same as VOL2

	Test assertion 3: Verify VOL2’s bootable flag is ‘False’

	Test action 4: Update the name of VOL2 with the original value

	Test action 5: Update the name of VOL2 with a new value

	Test assertion 4: Verify the name of VOL2 is updated successfully

	Test action 6: Create a volume VOL3 with no name specified and a description contains characters ‘@#$%^*’

	Test assertion 5: Verify VOL3 is created successfully

	Test action 7: Update the name of VOL3 and description with the original value

	Test assertion 6: Verify VOL3’s bootable flag is ‘False’

8.1.13.1.5.5.3.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of creating a cloned volume from a source volume,
getting cloned volume detail information and updating cloned volume attributes.

Specifically, the test verifies that:

	Cloned volume can be created from a source volume.

	Cloned volume detail information can be retrieved.

	Cloned volume detail information can be updated.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.3.4. Post conditions

N/A

8.1.13.1.5.5.4. Test Case 3 - Image copy-to-volume operations with the Cinder v2 or v3 API

8.1.13.1.5.5.4.1. Test case specification

tempest.api.volume.test_volumes_actions.VolumesActionsTest.test_volume_bootable
tempest.api.volume.test_volumes_get.VolumesGetTest.test_volume_create_get_update_delete_from_image

8.1.13.1.5.5.4.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.4.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.4.3.1. Test execution

	Test action 1: Set a provided volume VOL1’s bootable flag to ‘True’

	Test action 2: Retrieve VOL1’s bootable flag

	Test assertion 1: Verify VOL1’s bootable flag is ‘True’

	Test action 3: Set a provided volume VOL1’s bootable flag to ‘False’

	Test action 4: Retrieve VOL1’s bootable flag

	Test assertion 2: Verify VOL1’s bootable flag is ‘False’

	Test action 5: Create a bootable volume VOL2 from one image with a specific name and metadata

	Test action 6: Wait for VOL2 to reach ‘available’ status

	Test assertion 3: Verify the name of VOL2 name is correct

	Test action 7: Retrieve VOL2’s information

	Test assertion 4: Verify the retrieved volume name, ID and metadata are the same as VOL2

	Test assertion 5: Verify VOL2’s bootable flag is ‘True’

	Test action 8: Update the name of VOL2 with the original value

	Test action 9: Update the name of VOL2 with a new value

	Test assertion 6: Verify the name of VOL2 is updated successfully

	Test action 10: Create a volume VOL3 with no name specified and a description contains characters ‘@#$%^*’

	Test assertion 7: Verify VOL3 is created successfully

	Test action 11: Update the name of VOL3 and description with the original value

	Test assertion 8: Verify VOL3’s bootable flag is ‘True’

8.1.13.1.5.5.4.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of updating volume’s bootable flag and creating
a bootable volume from an image, getting bootable volume detail information and updating bootable volume.

Specifically, the test verifies that:

	Volume bootable flag can be set and retrieved.

	Bootable volume can be created from a source volume.

	Bootable volume detail information can be retrieved.

	Bootable volume detail information can be updated.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.4.4. Post conditions

N/A

8.1.13.1.5.5.5. Test Case 4 - Volume creation and deletion operations with the Cinder v2 or v3 API

8.1.13.1.5.5.5.1. Test case specification

tempest.api.volume.test_volumes_get.VolumesGetTest.test_volume_create_get_update_delete
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_with_invalid_size
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_with_nonexistent_source_volid
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_with_nonexistent_volume_type
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_without_passing_size
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_with_size_negative
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_with_size_zero

8.1.13.1.5.5.5.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.5.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.5.3.1. Test execution

	Test action 1: Create a volume VOL1 with a specific name and metadata

	Test action 2: Wait for VOL1 to reach ‘available’ status

	Test assertion 1: Verify the name of VOL1 is correct

	Test action 3: Retrieve VOL1’s information

	Test assertion 2: Verify the retrieved volume name, ID and metadata are the same as VOL1

	Test assertion 3: Verify VOL1’s bootable flag is ‘False’

	Test action 4: Update the name of VOL1 with the original value

	Test action 5: Update the name of VOL1 with a new value

	Test assertion 4: Verify the name of VOL1 is updated successfully

	Test action 6: Create a volume VOL2 with no name specified and a description contains characters ‘@#$%^*’

	Test assertion 5: Verify VOL2 is created successfully

	Test action 7: Update the name of VOL2 and description with the original value

	Test assertion 6: Verify VOL2’s bootable flag is ‘False’

	Test action 8: Create a volume with an invalid size ‘#$%’

	Test assertion 7: Verify create volume failed, a bad request error is returned in the response

	Test action 9: Create a volume with a nonexistent source volume

	Test assertion 8: Verify create volume failed, a ‘Not Found’ error is returned in the response

	Test action 10: Create a volume with a nonexistent volume type

	Test assertion 9: Verify create volume failed, a ‘Not Found’ error is returned in the response

	Test action 11: Create a volume without passing a volume size

	Test assertion 10: Verify create volume failed, a bad request error is returned in the response

	Test action 12: Create a volume with a negative volume size

	Test assertion 11: Verify create volume failed, a bad request error is returned in the response

	Test action 13: Create a volume with volume size ‘0’

	Test assertion 12: Verify create volume failed, a bad request error is returned in the response

8.1.13.1.5.5.5.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of creating a volume, getting volume
detail information and updating volume, the reference is,
Specifically, the test verifies that:

	Volume can be created from a source volume.

	Volume detail information can be retrieved/updated.

	Create a volume with an invalid size is not allowed.

	Create a volume with a nonexistent source volume or volume type is not allowed.

	Create a volume without passing a volume size is not allowed.

	Create a volume with a negative volume size is not allowed.

	Create a volume with volume size ‘0’ is not allowed.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.5.4. Post conditions

N/A

8.1.13.1.5.5.6. Test Case 5 - Volume service extension listing operations with the Cinder v2 or v3 API

8.1.13.1.5.5.6.1. Test case specification

tempest.api.volume.test_extensions.ExtensionsTestJSON.test_list_extensions

8.1.13.1.5.5.6.2. Test preconditions

	Volume extension API

	At least one Cinder extension is configured

8.1.13.1.5.5.6.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.6.3.1. Test execution

	Test action 1: List all cinder service extensions

	Test assertion 1: Verify all extensions are list in the extension list

8.1.13.1.5.5.6.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of listing all existent volume service extensions.

	Cinder service extensions can be listed.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.6.4. Post conditions

N/A

8.1.13.1.5.5.7. Test Case 6 - Volume GET operations with the Cinder v2 or v3 API

8.1.13.1.5.5.7.1. Test case specification

tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_get_invalid_volume_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_get_volume_without_passing_volume_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_volume_get_nonexistent_volume_id

8.1.13.1.5.5.7.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.7.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.7.3.1. Test execution

	Test action 1: Retrieve a volume with an invalid volume ID

	Test assertion 1: Verify retrieve volume failed, a ‘Not Found’ error is returned in the response

	Test action 2: Retrieve a volume with an empty volume ID

	Test assertion 2: Verify retrieve volume failed, a ‘Not Found’ error is returned in the response

	Test action 3: Retrieve a volume with a nonexistent volume ID

	Test assertion 3: Verify retrieve volume failed, a ‘Not Found’ error is returned in the response

8.1.13.1.5.5.7.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of getting volumes.
Specifically, the test verifies that:

	Get a volume with an invalid/an empty/a nonexistent volume ID is not allowed.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.7.4. Post conditions

N/A

8.1.13.1.5.5.8. Test Case 7 - Volume listing operations with the Cinder v2 or v3 API

8.1.13.1.5.5.8.1. Test case specification

tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_by_name
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_details_by_name
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_param_display_name_and_status
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_with_detail_param_display_name_and_status
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_with_detail_param_metadata
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_with_details
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_with_param_metadata
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volumes_list_by_availability_zone
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volumes_list_by_status
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volumes_list_details_by_availability_zone
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volumes_list_details_by_status
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_list_volumes_detail_with_invalid_status
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_list_volumes_detail_with_nonexistent_name
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_list_volumes_with_invalid_status
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_list_volumes_with_nonexistent_name
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_details_pagination
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_details_with_multiple_params
tempest.api.volume.test_volumes_list.VolumesListTestJSON.test_volume_list_pagination

8.1.13.1.5.5.8.2. Test preconditions

	Volume extension API

	The backing file for the volume group that Nova uses has space for at least 3 1G volumes

8.1.13.1.5.5.8.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.8.3.1. Test execution

	Test action 1: List all existent volumes

	Test assertion 1: Verify the volume list is complete

	Test action 2: List existent volumes and filter the volume list by volume name

	Test assertion 2: Verify the length of filtered volume list is 1 and the retrieved volume is correct

	Test action 3: List existent volumes in detail and filter the volume list by volume name

	Test assertion 3: Verify the length of filtered volume list is 1 and the retrieved volume is correct

	Test action 4: List existent volumes and filter the volume list by volume name and status ‘available’

	Test assertion 4: Verify the name and status parameters of the fetched volume are correct

	Test action 5: List existent volumes in detail and filter the volume list by volume name and status ‘available’

	Test assertion 5: Verify the name and status parameters of the fetched volume are correct

	Test action 6: List all existent volumes in detail and filter the volume list by volume metadata

	Test assertion 6: Verify the metadata parameter of the fetched volume is correct

	Test action 7: List all existent volumes in detail

	Test assertion 7: Verify the volume list is complete

	Test action 8: List all existent volumes and filter the volume list by volume metadata

	Test assertion 8: Verify the metadata parameter of the fetched volume is correct

	Test action 9: List existent volumes and filter the volume list by availability zone

	Test assertion 9: Verify the availability zone parameter of the fetched volume is correct

	Test action 10: List all existent volumes and filter the volume list by volume status ‘available’

	Test assertion 10: Verify the status parameter of the fetched volume is correct

	Test action 11: List existent volumes in detail and filter the volume list by availability zone

	Test assertion 11: Verify the availability zone parameter of the fetched volume is correct

	Test action 12: List all existent volumes in detail and filter the volume list by volume status ‘available’

	Test assertion 12: Verify the status parameter of the fetched volume is correct

	Test action 13: List all existent volumes in detail and filter the volume list by an invalid volume status ‘null’

	Test assertion 13: Verify the filtered volume list is empty

	Test action 14: List all existent volumes in detail and filter the volume list by a non-existent volume name

	Test assertion 14: Verify the filtered volume list is empty

	Test action 15: List all existent volumes and filter the volume list by an invalid volume status ‘null’

	Test assertion 15: Verify the filtered volume list is empty

	Test action 16: List all existent volumes and filter the volume list by a non-existent volume name

	Test assertion 16: Verify the filtered volume list is empty

	Test action 17: List all existent volumes in detail and paginate the volume list by desired volume IDs

	Test assertion 17: Verify only the desired volumes are listed in the filtered volume list

	Test action 18: List all existent volumes in detail and filter the volume list by volume status ‘available’ and display limit ‘2’

	Test action 19: Sort the filtered volume list by IDs in ascending order

	Test assertion 18: Verify the length of filtered volume list is 2

	Test assertion 19: Verify the status of retrieved volumes is correct

	Test assertion 20: Verify the filtered volume list is sorted correctly

	Test action 20: List all existent volumes in detail and filter the volume list by volume status ‘available’ and display limit ‘2’

	Test action 21: Sort the filtered volume list by IDs in descending order

	Test assertion 21: Verify the length of filtered volume list is 2

	Test assertion 22: Verify the status of retrieved volumes is correct

	Test assertion 23: Verify the filtered volume list is sorted correctly

	Test action 22: List all existent volumes and paginate the volume list by desired volume IDs

	Test assertion 24: Verify only the desired volumes are listed in the filtered volume list

8.1.13.1.5.5.8.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of getting a list of volumes and filtering the volume list.
Specifically, the test verifies that:

	Get a list of volumes (in detail) successful.

	Get a list of volumes (in detail) and filter volumes by name/status/metadata/availability zone successful.

	Volume list pagination functionality is working.

	Get a list of volumes in detail using combined condition successful.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.8.4. Post conditions

N/A

8.1.13.1.5.5.9. Test Case 8 - Volume metadata operations with the Cinder v2 or v3 API

8.1.13.1.5.5.9.1. Test case specification

tempest.api.volume.test_volume_metadata.VolumesMetadataTest.test_crud_volume_metadata
tempest.api.volume.test_volume_metadata.VolumesMetadataTest.test_update_show_volume_metadata_item

8.1.13.1.5.5.9.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.9.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.9.3.1. Test execution

	Test action 1: Create metadata for a provided volume VOL1

	Test action 2: Get the metadata of VOL1

	Test assertion 1: Verify the metadata of VOL1 is correct

	Test action 3: Update the metadata of VOL1

	Test assertion 2: Verify the metadata of VOL1 is updated

	Test action 4: Delete one metadata item ‘key1’ of VOL1

	Test assertion 3: Verify the metadata item ‘key1’ is deleted

	Test action 5: Create metadata for a provided volume VOL2

	Test assertion 4: Verify the metadata of VOL2 is correct

	Test action 6: Update one metadata item ‘key3’ of VOL2

	Test assertion 5: Verify the metadata of VOL2 is updated

8.1.13.1.5.5.9.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of creating metadata for a volume, getting the
metadata of a volume, updating volume metadata and deleting a metadata item of a volume.
Specifically, the test verifies that:

	Create metadata for volume successfully.

	Get metadata of volume successfully.

	Update volume metadata and metadata item successfully.

	Delete metadata item of a volume successfully.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.9.4. Post conditions

N/A

8.1.13.1.5.5.10. Test Case 9 - Verification of read-only status on volumes with the Cinder v2 or v3 API

8.1.13.1.5.5.10.1. Test case specification

tempest.api.volume.test_volumes_actions.VolumesActionsTest.test_volume_readonly_update

8.1.13.1.5.5.10.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.10.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.10.3.1. Test execution

	Test action 1: Update a provided volume VOL1’s read-only access mode to ‘True’

	Test assertion 1: Verify VOL1 is in read-only access mode

	Test action 2: Update a provided volume VOL1’s read-only access mode to ‘False’

	Test assertion 2: Verify VOL1 is not in read-only access mode

8.1.13.1.5.5.10.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of setting and updating volume read-only access mode.
Specifically, the test verifies that:

	Volume read-only access mode can be set and updated.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.10.4. Post conditions

N/A

8.1.13.1.5.5.11. Test Case 10 - Volume snapshot creation/deletion operations with the Cinder v2 or v3 API

8.1.13.1.5.5.11.1. Test case specification

tempest.api.volume.test_snapshot_metadata.SnapshotMetadataTestJSON.test_crud_snapshot_metadata
tempest.api.volume.test_snapshot_metadata.SnapshotMetadataTestJSON.test_update_show_snapshot_metadata_item
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_create_volume_with_nonexistent_snapshot_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_delete_invalid_volume_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_delete_volume_without_passing_volume_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_volume_delete_nonexistent_volume_id
tempest.api.volume.test_volumes_snapshots.VolumesSnapshotTestJSON.test_snapshot_create_get_list_update_delete
tempest.api.volume.test_volumes_snapshots.VolumesSnapshotTestJSON.test_volume_from_snapshot
tempest.api.volume.test_volumes_snapshots_list.VolumesSnapshotListTestJSON.test_snapshots_list_details_with_params
tempest.api.volume.test_volumes_snapshots_list.VolumesSnapshotListTestJSON.test_snapshots_list_with_params
tempest.api.volume.test_volumes_snapshots_negative.VolumesSnapshotNegativeTestJSON.test_create_snapshot_with_nonexistent_volume_id
tempest.api.volume.test_volumes_snapshots_negative.VolumesSnapshotNegativeTestJSON.test_create_snapshot_without_passing_volume_id

8.1.13.1.5.5.11.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.11.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.11.3.1. Test execution

	Test action 1: Create metadata for a provided snapshot SNAP1

	Test action 2: Get the metadata of SNAP1

	Test assertion 1: Verify the metadata of SNAP1 is correct

	Test action 3: Update the metadata of SNAP1

	Test assertion 2: Verify the metadata of SNAP1 is updated

	Test action 4: Delete one metadata item ‘key3’ of SNAP1

	Test assertion 3: Verify the metadata item ‘key3’ is deleted

	Test action 5: Create metadata for a provided snapshot SNAP2

	Test assertion 4: Verify the metadata of SNAP2 is correct

	Test action 6: Update one metadata item ‘key3’ of SNAP2

	Test assertion 5: Verify the metadata of SNAP2 is updated

	Test action 7: Create a volume with a nonexistent snapshot

	Test assertion 6: Verify create volume failed, a ‘Not Found’ error is returned in the response

	Test action 8: Delete a volume with an invalid volume ID

	Test assertion 7: Verify delete volume failed, a ‘Not Found’ error is returned in the response

	Test action 9: Delete a volume with an empty volume ID

	Test assertion 8: Verify delete volume failed, a ‘Not Found’ error is returned in the response

	Test action 10: Delete a volume with a nonexistent volume ID

	Test assertion 9: Verify delete volume failed, a ‘Not Found’ error is returned in the response

	Test action 11: Create a snapshot SNAP2 from a provided volume VOL1

	Test action 12: Retrieve SNAP2’s detail information

	Test assertion 10: Verify SNAP2 is created from VOL1

	Test action 13: Update the name and description of SNAP2

	Test assertion 11: Verify the name and description of SNAP2 are updated in the response body of update snapshot API

	Test action 14: Retrieve SNAP2’s detail information

	Test assertion 12: Verify the name and description of SNAP2 are correct

	Test action 15: Delete SNAP2

	Test action 16: Create a volume VOL2 with a volume size

	Test action 17: Create a snapshot SNAP3 from VOL2

	Test action 18: Create a volume VOL3 from SNAP3 with a bigger volume size

	Test action 19: Retrieve VOL3’s detail information

	Test assertion 13: Verify volume size and source snapshot of VOL3 are correct

	Test action 20: List all snapshots in detail and filter the snapshot list by name

	Test assertion 14: Verify the filtered snapshot list is correct

	Test action 21: List all snapshots in detail and filter the snapshot list by status

	Test assertion 15: Verify the filtered snapshot list is correct

	Test action 22: List all snapshots in detail and filter the snapshot list by name and status

	Test assertion 16: Verify the filtered snapshot list is correct

	Test action 23: List all snapshots and filter the snapshot list by name

	Test assertion 17: Verify the filtered snapshot list is correct

	Test action 24: List all snapshots and filter the snapshot list by status

	Test assertion 18: Verify the filtered snapshot list is correct

	Test action 25: List all snapshots and filter the snapshot list by name and status

	Test assertion 19: Verify the filtered snapshot list is correct

	Test action 26: Create a snapshot from a nonexistent volume by using an invalid volume ID

	Test assertion 20: Verify create snapshot failed, a ‘Not Found’ error is returned in the response

	Test action 27: Create a snapshot from a volume by using an empty volume ID

	Test assertion 21: Verify create snapshot failed, a ‘Not Found’ error is returned in the response

8.1.13.1.5.5.11.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of managing snapshot and snapshot metadata.
Specifically, the test verifies that:

	Create metadata for snapshot successfully.

	Get metadata of snapshot successfully.

	Update snapshot metadata and metadata item successfully.

	Delete metadata item of a snapshot successfully.

	Create a volume from a nonexistent snapshot is not allowed.

	Delete a volume using an invalid volume ID is not allowed.

	Delete a volume without passing the volume ID is not allowed.

	Delete a non-existent volume is not allowed.

	Create snapshot successfully.

	Get snapshot’s detail information successfully.

	Update snapshot attributes successfully.

	Delete snapshot successfully.

	Creates a volume and a snapshot passing a size different from the source successfully.

	List snapshot details by display_name and status filters successfully.

	Create a snapshot from a nonexistent volume is not allowed.

	Create a snapshot from a volume without passing the volume ID is not allowed.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.11.4. Post conditions

N/A

8.1.13.1.5.5.12. Test Case 11 - Volume update operations with the Cinder v2 or v3 API

8.1.13.1.5.5.12.1. Test case specification

tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_update_volume_with_empty_volume_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_update_volume_with_invalid_volume_id
tempest.api.volume.test_volumes_negative.VolumesNegativeTest.test_update_volume_with_nonexistent_volume_id

8.1.13.1.5.5.12.2. Test preconditions

	Volume extension API

8.1.13.1.5.5.12.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.12.3.1. Test execution

	Test action 1: Update a volume by using an empty volume ID

	Test assertion 1: Verify update volume failed, a ‘Not Found’ error is returned in the response

	Test action 2: Update a volume by using an invalid volume ID

	Test assertion 2: Verify update volume failed, a ‘Not Found’ error is returned in the response

	Test action 3: Update a non-existent volume by using a random generated volume ID

	Test assertion 3: Verify update volume failed, a ‘Not Found’ error is returned in the response

8.1.13.1.5.5.12.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of updating volume attributes.
Specifically, the test verifies that:

	Update a volume without passing the volume ID is not allowed.

	Update a volume using an invalid volume ID is not allowed.

	Update a non-existent volume is not allowed.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.12.4. Post conditions

N/A

8.1.13.1.5.5.13. Test Case 12 - Volume list version operation with the Cinder v3 API

8.1.13.1.5.5.13.1. Test case specification

tempest.api.volume.test_versions.VersionsTest.test_list_versions

8.1.13.1.5.5.13.2. Test preconditions

	Volume API

8.1.13.1.5.5.13.3. Basic test flow execution description and pass/fail criteria

8.1.13.1.5.5.13.3.1. Test execution

	Test action 1: List volume API versions

	Test assertion 1: The list versions operation is successful executed

8.1.13.1.5.5.13.3.2. Pass / Fail criteria

This test case evaluates the volume API ability of listing volume API versions.
Specifically, the test verifies that:

	Successfully listing volume API versions.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.13.1.5.5.13.4. Post conditions

N/A

8.1.14. Neutron Trunk Port Tempest Tests

8.1.14.1. Scope

This test area evaluates the ability of a system under test to support Neutron
trunk ports. The test area specifically validates port and sub-port API CRUD
operations, by means of both positive and negative tests.

8.1.14.2. References

	OpenStack API reference [https://docs.openstack.org/api-ref/network/v2/#trunk-networking]

8.1.14.3. System Under Test (SUT)

The system under test is assumed to be the NFVI and VIM deployed on a Pharos
compliant infrastructure.

8.1.14.4. Test Area Structure

The test area is structured in individual tests as listed below. Each test case
is able to run independently, i.e. irrelevant of the state created by a previous
test. For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

	Neutron Trunk API tests [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk.py]

	Neutron Trunk API trunk details [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk_details.py]

	Neutron Trunk API negative tests [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk_negative.py]

Trunk port and sub-port CRUD operations:

These tests cover the CRUD (Create, Read, Update, Delete) life-cycle operations
of trunk ports and subports.

Implementation:
TrunkTestJSON [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk.py#L71]

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_add_subports

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_create_show_delete_trunk

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_create_trunk_empty_subports_list

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_create_trunk_subports_not_specified

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_delete_trunk_with_subport_is_allowed

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_get_subports

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_list_trunks

	neutron_tempest_plugin.api.test_trunk.TrunkTestJSON.test_remove_subport

API for listing query results:

These tests verify that listing operations of trunk port objects work. This
functionality is required for CLI and UI operations.

Implementation:
TrunksSearchCriteriaTest [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk.py#L306]

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_no_pagination_limit_0

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_pagination

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_pagination_page_reverse_asc

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_pagination_page_reverse_desc

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_pagination_with_marker

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_sorts_asc

	neutron_tempest_plugin.api.test_trunk.TrunksSearchCriteriaTest.test_list_sorts_desc

Query trunk port details:

These tests validate that all attributes of trunk port objects can be queried.

Implementation:
TestTrunkDetailsJSON [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk_details.py#L20]

	neutron_tempest_plugin.api.test_trunk_details.TestTrunkDetailsJSON.test_port_resource_empty_trunk_details

	neutron_tempest_plugin.api.test_trunk_details.TestTrunkDetailsJSON.test_port_resource_trunk_details_no_subports

	neutron_tempest_plugin.api.test_trunk_details.TestTrunkDetailsJSON.test_port_resource_trunk_details_with_subport

Negative tests:

These group of tests comprise negative tests which verify that invalid operations
are handled correctly by the system under test.

Implementation:
TrunkTestNegative [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/api/test_trunk_negative.py#L27]

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_add_subport_duplicate_segmentation_details

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_add_subport_passing_dict

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_add_subport_port_id_disabled_trunk

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_add_subport_port_id_uses_parent_port_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_subport_missing_segmentation_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_subport_nonexistent_port_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_subport_nonexistent_trunk

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_trunk_duplicate_subport_segmentation_ids

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_trunk_nonexistent_port_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_trunk_nonexistent_subport_port_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_trunk_with_subport_missing_port_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_trunk_with_subport_missing_segmentation_id

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_create_trunk_with_subport_missing_segmentation_type

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_delete_port_in_use_by_subport

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_delete_port_in_use_by_trunk

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_delete_trunk_disabled_trunk

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_remove_subport_not_found

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_remove_subport_passing_dict

	neutron_tempest_plugin.api.test_trunk_negative.TrunkTestJSON.test_remove_subport_port_id_disabled_trunk

Scenario tests (tests covering more than one functionality):

In contrast to the API tests above, these tests validate more than one specific
API capability. Instead they verify that a simple scenario (example workflow)
functions as intended. To this end, they boot up two VMs with trunk ports and
sub ports and verify connectivity between those VMs.

Implementation:
TrunkTest [https://github.com/openstack/neutron-tempest-plugin/blob/0.3.0/neutron_tempest_plugin/scenario/test_trunk.py#L41]

	neutron_tempest_plugin.scenario.test_trunk.TrunkTest.test_trunk_subport_lifecycle

8.1.15. Common virtual machine life cycle events test specification

8.1.15.1. Scope

The common virtual machine life cycle events test area evaluates the ability of
the system under test to behave correctly after common virtual machine life
cycle events. The tests in this test area will evaluate:

	Stop/Start a server

	Reboot a server

	Rebuild a server

	Pause/Unpause a server

	Suspend/Resume a server

	Resize a server

	Resizing a volume-backed server

	Sequence suspend resume

	Shelve/Unshelve a server

	Cold migrate a server

	Live migrate a server

8.1.15.2. References

	iSCSI

	https://docs.openstack.org/liberty/config-reference/content/config-iscsi-storage.html

8.1.15.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test area

	API - Application Programming Interface

	NFVi - Network Functions Virtualization infrastructure

	VIM - Virtual Infrastructure Manager

	VM - Virtual Machine

8.1.15.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.15.5. Test Area Structure

The test area is structured based on common virtual machine life cycle events.
Each test case is able to run independently, i.e. irrelevant of the state
created by a previous test. Specifically, every test performs clean-up
operations which return the system to the same state as before the test.

All these test cases are included in the test case functest.tempest.vm_lifecycle of
OVP test suite.

8.1.15.6. Test Descriptions

8.1.15.6.1. API Used and Reference

Block storage: https://docs.openstack.org/api-ref/block-storage/

	create volume

	delete volume

	attach volume to server

	detach volume from server

Security Groups: https://docs.openstack.org/api-ref/network/v2/index.html#security-groups-security-groups

	create security group

	delete security group

Networks: https://docs.openstack.org/api-ref/network/v2/index.html#networks

	create network

	delete network

Routers and interface: https://docs.openstack.org/api-ref/network/v2/index.html#routers-routers

	create router

	delete router

	add interface to router

Subnets: https://docs.openstack.org/api-ref/network/v2/index.html#subnets

	create subnet

	delete subnet

Servers: https://docs.openstack.org/api-ref/compute/

	create keypair

	create server

	show server

	delete server

	add/assign floating IP

	resize server

	revert resized server

	confirm resized server

	pause server

	unpause server

	start server

	stop server

	reboot server

	rebuild server

	suspend server

	resume suspended server

	shelve server

	unshelve server

	migrate server

	live-migrate server

Ports: https://docs.openstack.org/api-ref/network/v2/index.html#ports

	create port

	delete port

Floating IPs: https://docs.openstack.org/api-ref/network/v2/index.html#floating-ips-floatingips

	create floating IP

	delete floating IP

Availability zone: https://docs.openstack.org/api-ref/compute/

	get availability zone

8.1.15.6.2. Test Case 1 - Minimum basic scenario

8.1.15.6.2.1. Test case specification

tempest.scenario.test_minimum_basic.TestMinimumBasicScenario.test_minimum_basic_scenario

8.1.15.6.2.2. Test preconditions

	Nova, cinder, glance, neutron services are available

	One public network

8.1.15.6.2.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.2.3.1. Test execution

	Test action 1: Create an image IMG1

	Test action 2: Create a keypair KEYP1

	Test action 3: Create a server VM1 with IMG1 and KEYP1

	Test assertion 1: Verify VM1 is created successfully

	Test action 4: Create a volume VOL1

	Test assertion 2: Verify VOL1 is created successfully

	Test action 5: Attach VOL1 to VM1

	Test assertion 3: Verify VOL1’s status has been updated after attached to VM1

	Test action 6: Create a floating IP FIP1 and assign FIP1 to VM1

	Test assertion 4: Verify VM1’s addresses have been refreshed after associating FIP1

	Test action 7: Create and add security group SG1 to VM1

	Test assertion 5: Verify can SSH to VM1 via FIP1

	Test action 8: Reboot VM1

	Test assertion 6: Verify can SSH to VM1 via FIP1

	Test assertion 7: Verify VM1’s disk count equals to 1

	Test action 9: Delete the floating IP FIP1 from VM1

	Test assertion 8: Verify VM1’s addresses have been refreshed after disassociating FIP1

	Test action 10: Delete SG1, IMG1, KEYP1, VOL1, VM1 and FIP1

8.1.15.6.2.3.2. Pass / Fail criteria

This test evaluates a minimum basic scenario. Specifically, the test verifies that:

	The server can be connected before reboot.

	The server can be connected after reboot.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.2.4. Post conditions

N/A

8.1.15.6.3. Test Case 2 - Cold migration

8.1.15.6.3.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_cold_migration

8.1.15.6.3.2. Test preconditions

	At least 2 compute nodes

	Nova, neutron services are available

	One public network

8.1.15.6.3.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.3.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Get VM1’s host info SRC_HOST

	Test action 5: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 1: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 6: Cold migrate VM1

	Test action 7: Wait for VM1 to reach ‘VERIFY_RESIZE’ status

	Test action 8: Confirm resize VM1

	Test action 9: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 2: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 10: Get VM1’s host info DST_HOST

	Test assertion 3: Verify SRC_HOST does not equal to DST_HOST

	Test action 11: Delete KEYP1, VM1 and FIP1

8.1.15.6.3.3.2. Pass / Fail criteria

This test evaluates the ability to cold migrate VMs. Specifically, the test verifies that:

	Servers can be cold migrated from one compute node to another computer node.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.3.4. Post conditions

N/A

8.1.15.6.4. Test Case 3 - Pause and unpause server

8.1.15.6.4.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_pause_unpause

8.1.15.6.4.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.4.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.4.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Pause VM1

	Test action 5: Wait for VM1 to reach ‘PAUSED’ status

	Test assertion 1: Verify FIP1 status is ‘ACTIVE’

	Test assertion 2: Verify ping FIP1 failed and SSH to VM1 via FIP1 failed

	Test action 6: Unpause VM1

	Test action 7: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 3: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 8: Delete KEYP1, VM1 and FIP1

8.1.15.6.4.3.2. Pass / Fail criteria

This test evaluates the ability to pause and unpause VMs. Specifically, the test verifies that:

	When paused, servers cannot be reached.

	When unpaused, servers can recover its reachability.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.4.4. Post conditions

N/A

8.1.15.6.5. Test Case 4 - Reboot server

8.1.15.6.5.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_reboot

8.1.15.6.5.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.5.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.5.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Soft reboot VM1

	Test action 5: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 1: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 6: Delete KEYP1, VM1 and FIP1

8.1.15.6.5.3.2. Pass / Fail criteria

This test evaluates the ability to reboot servers. Specifically, the test verifies that:

	After reboot, servers can still be connected.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.5.4. Post conditions

N/A

8.1.15.6.6. Test Case 5 - Rebuild server

8.1.15.6.6.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_rebuild

8.1.15.6.6.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.6.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.6.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Rebuild VM1 with another image

	Test action 5: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 1: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 6: Delete KEYP1, VM1 and FIP1

8.1.15.6.6.3.2. Pass / Fail criteria

This test evaluates the ability to rebuild servers. Specifically, the test verifies that:

	Servers can be rebuilt with specific image correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.6.4. Post conditions

N/A

8.1.15.6.7. Test Case 6 - Resize server

8.1.15.6.7.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_resize

8.1.15.6.7.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.7.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.7.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Resize VM1 with another flavor

	Test action 5: Wait for VM1 to reach ‘VERIFY_RESIZE’ status

	Test action 6: Confirm resize VM1

	Test action 7: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 1: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 8: Delete KEYP1, VM1 and FIP1

8.1.15.6.7.3.2. Pass / Fail criteria

This test evaluates the ability to resize servers. Specifically, the test verifies that:

	Servers can be resized with specific flavor correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.7.4. Post conditions

N/A

8.1.15.6.8. Test Case 7 - Stop and start server

8.1.15.6.8.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_stop_start

8.1.15.6.8.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.8.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.8.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Stop VM1

	Test action 5: Wait for VM1 to reach ‘SHUTOFF’ status

	Test assertion 1: Verify ping FIP1 failed and SSH to VM1 via FIP1 failed

	Test action 6: Start VM1

	Test action 7: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 2: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 8: Delete KEYP1, VM1 and FIP1

8.1.15.6.8.3.2. Pass / Fail criteria

This test evaluates the ability to stop and start servers. Specifically, the test verifies that:

	When stopped, servers cannot be reached.

	When started, servers can recover its reachability.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.8.4. Post conditions

N/A

8.1.15.6.9. Test Case 8 - Suspend and resume server

8.1.15.6.9.1. Test case specification

tempest.scenario.test_network_advanced_server_ops.TestNetworkAdvancedServerOps.test_server_connectivity_suspend_resume

8.1.15.6.9.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.9.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.9.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a server VM1 with KEYP1

	Test action 3: Create a floating IP FIP1 and assign FIP1 to VM1

	Test action 4: Suspend VM1

	Test action 5: Wait for VM1 to reach ‘SUSPENDED’ status

	Test assertion 1: Verify ping FIP1 failed and SSH to VM1 via FIP1 failed

	Test action 6: Resume VM1

	Test action 7: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 2: Verify can ping FIP1 successfully and can SSH to VM1 via FIP1

	Test action 8: Delete KEYP1, VM1 and FIP1

8.1.15.6.9.3.2. Pass / Fail criteria

This test evaluates the ability to suspend and resume servers. Specifically, the test verifies that:

	When suspended, servers cannot be reached.

	When resumed, servers can recover its reachability.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.9.4. Post conditions

N/A

8.1.15.6.10. Test Case 9 - Suspend and resume server in sequence

8.1.15.6.10.1. Test case specification

tempest.scenario.test_server_advanced_ops.TestServerAdvancedOps.test_server_sequence_suspend_resume

8.1.15.6.10.2. Test preconditions

	Nova, neutron services are available

	One public network

8.1.15.6.10.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.10.3.1. Test execution

	Test action 1: Create a server VM1

	Test action 2: Suspend VM1

	Test action 3: Wait for VM1 to reach ‘SUSPENDED’ status

	Test assertion 1: Verify VM1’s status is ‘SUSPENDED’

	Test action 4: Resume VM1

	Test action 5: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 2: Verify VM1’s status is ‘ACTIVE’

	Test action 6: Suspend VM1

	Test action 7: Wait for VM1 to reach ‘SUSPENDED’ status

	Test assertion 3: Verify VM1 status is ‘SUSPENDED’

	Test action 8: Resume VM1

	Test action 9: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 4: Verify VM1 status is ‘ACTIVE’

	Test action 10: Delete KEYP1, VM1 and FIP1

8.1.15.6.10.3.2. Pass / Fail criteria

This test evaluates the ability to suspend and resume servers in sequence.
Specifically, the test verifies that:

	Servers can be suspend and resume in sequence correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.10.4. Post conditions

N/A

8.1.15.6.11. Test Case 10 - Resize volume backed server

8.1.15.6.11.1. Test case specification

tempest.api.compute.servers.test_server_actions.ServerActionsTestJSON.test_resize_volume_backed_server_confirm

8.1.15.6.11.2. Test preconditions

	Nova, neutron, cinder services are available

	One public network

8.1.15.6.11.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.11.3.1. Test execution

	Test action 1: Create a volume backed server VM1

	Test action 2: Resize VM1 with another flavor

	Test action 3: Wait for VM1 to reach ‘VERIFY_RESIZE’ status

	Test action 4: Confirm resize VM1

	Test action 5: Wait for VM1 to reach ‘ACTIVE’ status

	Test assertion 1: VM1’s status is ‘ACTIVE’

	Test action 6: Delete VM1

8.1.15.6.11.3.2. Pass / Fail criteria

This test evaluates the ability to resize volume backed servers.
Specifically, the test verifies that:

	Volume backed servers can be resized with specific flavor correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.11.4. Post conditions

N/A

8.1.15.6.12. Test Case 11 - Shelve and unshelve server

8.1.15.6.12.1. Test case specification

tempest.scenario.test_shelve_instance.TestShelveInstance.test_shelve_instance

8.1.15.6.12.2. Test preconditions

	Nova, neutron, image services are available

	One public network

8.1.15.6.12.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.12.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a security group SG1, which has rules for allowing
incoming SSH and ICMP traffic

	Test action 3: Create a server with SG1 and KEYP1

	Test action 4: Create a timestamp and store it in a file F1 inside VM1

	Test action 5: Shelve VM1

	Test action 6: Unshelve VM1

	Test action 7: Wait for VM1 to reach ‘ACTIVE’ status

	Test action 8: Read F1 and compare if the read value and the previously written value
are the same or not

	Test assertion 1: Verify the values written and read are the same

	Test action 9: Delete SG1, KEYP1 and VM1

8.1.15.6.12.3.2. Pass / Fail criteria

This test evaluates the ability to shelve and unshelve servers.
Specifically, the test verifies that:

	Servers can be shelved and unshelved correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.12.4. Post conditions

N/A

8.1.15.6.13. Test Case 12 - Shelve and unshelve volume backed server

8.1.15.6.13.1. Test case specification

tempest.scenario.test_shelve_instance.TestShelveInstance.test_shelve_volume_backed_instance

8.1.15.6.13.2. Test preconditions

	Nova, neutron, image, cinder services are available

	One public network

8.1.15.6.13.3. Basic test flow execution description and pass/fail criteria

8.1.15.6.13.3.1. Test execution

	Test action 1: Create a keypair KEYP1

	Test action 2: Create a security group SG1, which has rules for allowing
incoming and outgoing SSH and ICMP traffic

	Test action 3: Create a volume backed server VM1 with SG1 and KEYP1

	Test action 4: SSH to VM1 to create a timestamp T_STAMP1 and store it in a file F1 inside VM1

	Test action 5: Shelve VM1

	Test action 6: Unshelve VM1

	Test action 7: Wait for VM1 to reach ‘ACTIVE’ status

	Test action 8: SSH to VM1 to read the timestamp T_STAMP2 stored in F1

	Test assertion 1: Verify T_STAMP1 equals to T_STAMP2

	Test action 9: Delete SG1, KEYP1 and VM1

8.1.15.6.13.3.2. Pass / Fail criteria

This test evaluates the ability to shelve and unshelve volume backed servers.
Specifically, the test verifies that:

	Volume backed servers can be shelved and unshelved correctly.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.15.6.13.4. Post conditions

N/A

8.1.16. Tempest Volume test specification

8.1.16.1. Scope

This test area evaluates the ability of a system under test to manage volumes.

The test area specifically validates the creation, the deletion and
the attachment/detach volume operations.
tests.

8.1.16.2. References

N/A

8.1.16.3. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.16.4. Test Area Structure

The test area is structured in individual tests as listed below.
For detailed information on the individual steps and assertions performed
by the tests, review the Python source code accessible via the following links:

All these test cases are included in the test case functest.tempest.volume of
OVP test suite.

8.1.16.4.1. Test Case 1 - Attach Detach Volume to Instance

8.1.16.4.1.1. Test case specification

Implementation: Attach Detach Volume to Instance [https://github.com/openstack/tempest/blob/17.1.0/tempest/api/volume/test_volumes_actions.py]

	tempest.api.volume.test_volumes_actions.VolumesActionsTest.test_attach_detach_volume_to_instance

8.1.16.4.1.2. Test preconditions

	Volume extension API

8.1.16.4.1.3. Basic test flow execution description and pass/fail criteria

8.1.16.4.1.3.1. Test execution

	Test action 1: Create a server VM1

	Test action 2: Attach a provided VOL1 to VM1

	Test assertion 1: Verify VOL1 is in ‘in-use’ status

	Test action 3: Detach VOL1 from VM1

	Test assertion 2: Verify detach volume VOL1 successfully and VOL1 is in ‘available’ status

8.1.16.4.1.3.2. Pass / fail criteria

This test evaluates the volume API ability of attaching a volume to a server
and detaching a volume from a server. Specifically, the test verifies that:

	Volumes can be attached and detached from servers.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.16.4.1.4. Post conditions

N/A

8.1.16.4.2. Test Case 2 - Volume Boot Pattern test

8.1.16.4.2.1. Test case specification

Implementation: Volume Boot Pattern test [https://github.com/openstack/tempest/blob/17.1.0/tempest/scenario/test_volume_boot_pattern.py]

	tempest.scenario.test_volume_boot_pattern.TestVolumeBootPattern.test_volume_boot_pattern

8.1.16.4.2.2. Test preconditions

	Volume extension API

8.1.16.4.2.3. Basic test flow execution description and pass/fail criteria

8.1.16.4.2.3.1. Test execution

	Test action 1:Create in Cinder some bootable volume VOL1 importing a Glance image

	Test action 2:Boot an instance VM1 from the bootable volume VOL1

	Test action 3:Write content to the VOL1

	Test action 4:Delete VM1 and Boot a new instance VM2 from the volume VOL1

	Test action 5:Check written content in the instance

	Test assertion 1: Verify the content of written file in action 3

	Test action 6:Create a volume snapshot VOL2 while the instance VM2 is running

	Test action 7:Boot an additional instance VM3 from the new snapshot based volume VOL2

	Test action 8:Check written content in the instance booted from snapshot

	Test assertion 2: Verify the content of written file in action 3

8.1.16.4.2.3.2. Pass / fail criteria

This test evaluates the volume storage consistency. Specifically, the test verifies that:

	The content of written file in the volume.

In order to pass this test, all test assertions listed in the test execution above need to pass.

8.1.16.4.2.4. Post conditions

N/A

8.1.17. VNF test specification

8.1.17.1. Scope

The VNF test area evaluates basic NFV capabilities of the system under test.
These capabilities include creating a small number of virtual machines,
establishing the SUT VNF, VNFs which are going to support the test activities
and an Orchestrator as well as verifying the proper behavior of the basic VNF.

8.1.17.2. References

This test area references the following specifications and guides:

	Functest repo for detailed description of the vEPC testcase

	https://github.com/opnfv/functest/blob/master/docs/testing/user/userguide/test_details.rst#juju_epc

	Functest repo for detailed description of the vIMS testcase

	https://github.com/opnfv/functest/blob/master/docs/testing/user/userguide/test_details.rst#cloudify_ims

	3GPP LTE

	https://www.3gpp.org/technologies/keywords-acronyms/98-lte

	ETSI - TS 24.301

	https://www.etsi.org/deliver/etsi_ts/124300_124399/124301/10.03.00_60/ts_124301v100300p.pdf

	Cloudify clearwater: opnfv-cloudify-clearwater [1]

	https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater

8.1.17.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test
area

	3GPP - 3rd Generation Partnership Project

	EPC - Evolved Packet Core

	ETSI - European Telecommunications Standards Institute

	IMS - IP Multimedia Core Network Subsystem

	LTE - Long Term Evolution

	NFV - Network functions virtualization

	OAI - Open Air Interface

	TS - Technical Specifications

	VM - Virtual machine

	VNF - Virtual Network Function

8.1.17.4. System Under Test (SUT)

The system under test is assumed to be the VNF and VIM in operation on a
Pharos compliant infrastructure.

8.1.17.5. Test Area Structure

The test area is structured in two separate tests which are executed
sequentially. The order of the tests is arbitrary as there are no dependencies
across the tests. Specifically, every test performs clean-up operations which
return the system to the same state as before the test.

8.1.17.6. Test Descriptions

8.1.17.6.1. Test Case 1 - vEPC

8.1.17.6.1.1. Short name

functest.vnf.vepc

8.1.17.6.1.2. Use case specification

The Evolved Packet Core (EPC) is the main component of the System Architecture
Evolution (SAE) which forms the core of the 3GPP LTE specification.

vEPC has been integrated in Functest to demonstrate the capability to deploy
a complex mobility-specific NFV scenario on the OPNFV platform. The OAI EPC
supports most of the essential functions defined by the 3GPP Technical Specs;
hence the successful execution of functional tests on the OAI EPC provides a
good endorsement of the underlying NFV platform.

8.1.17.6.1.3. Test preconditions

At least one compute node is available. No further pre-configuration needed.

8.1.17.6.1.4. Basic test flow execution description and pass/fail criteria

8.1.17.6.1.4.1. Methodology for verifying connectivity

This integration also includes ABot, a Test Orchestration system that enables
test scenarios to be defined in high-level DSL. ABot is also deployed as a VM
on the OPNFV platform; and this provides an example of the automation driver
and the Test VNF being both deployed as separate VNFs on the underlying OPNFV
platform.

8.1.17.6.1.4.2. Test execution

	Test action 1: Deploy Juju controller (VNF Manager) using Bootstrap command.

	Test action 2: Deploy ABot (Orchestrator) and OAI EPC as Juju charms.
Configuration of ABot and OAI EPC components is handled through built-in Juju
relations.

	Test action 3: Execution of ABot feature files triggered by Juju actions.
This executes a suite of LTE signalling tests on the OAI EPC.

	Test action 4: ABot test results are parsed accordingly.

	Test action 5: The deployed VMs are deleted.

8.1.17.6.1.4.3. Pass / Fail criteria

The VNF Manager (juju) should be deployed successfully

Test executor (ABot), test Orchestration system is deployed and enables test
scenarios to be defined in high-level DSL

VMs which are act as VNFs (including the VNF that is the SUT for test case) are
following the 3GPP technical specifications accordingly.

8.1.17.6.1.5. Post conditions

The clean-up operations are run.

8.1.17.6.2. Test Case 2 - vIMS

8.1.17.6.2.1. Short name

functest.vnf.vims

8.1.17.6.2.2. Use case specification

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is
an architectural framework for delivering IP multimedia services.

vIMS test case is integrated to demonstrate the capability to deploy a
relatively complex NFV scenario on top of the OPNFV infrastructure.

Example of a real VNF deployment to show the NFV capabilities of the platform.
The IP Multimedia Subsytem is a typical Telco test case, referenced by ETSI.
It provides a fully functional VoIP System.

8.1.17.6.2.3. Test preconditions

Certain ubuntu server and cloudify images version refer to dovetail testing user guide.

At least 30G RAMs and 50 vcpu cores required.

8.1.17.6.2.4. Basic test flow execution description and pass/fail criteria

vIMS has been integrated in Functest to demonstrate the capability to deploy
a relatively complex NFV scenario on the OPNFV platform. The deployment of a
complete functional VNF allows the test of most of the essential functions
needed for a NFV platform.

8.1.17.6.2.4.1. Test execution

	Test action 1: Deploy a VNF orchestrator (Cloudify).

	Test action 2: Deploy a Clearwater vIMS (IP Multimedia Subsystem) VNF from
this orchestrator based on a TOSCA blueprint defined in repository of
opnfv-cloudify-clearwater [1].

	Test action 3: Run suite of signaling tests on top of this VNF

	Test action 4: Collect test results.

	Test action 5: The deployed VMs are deleted.

8.1.17.6.2.4.2. Pass / Fail criteria

The VNF orchestrator (Cloudify) should be deployed successfully.

The Clearwater vIMS (IP Multimedia Subsystem) VNF from this orchestrator
should be deployed successfully.

The suite of signaling tests on top of vIMS should be run successfully.

The test scenarios on the NFV platform should be executed successfully following
the ETSI standards accordingly.

8.1.17.6.2.5. Post conditions

All resources created during the test run have been cleaned-up

8.1.18. Vping Test Specification

8.1.18.1. Scope

The vping test area evaluates basic NFVi capabilities of the system under test.
These capabilities include creating a small number of virtual machines,
establishing basic L3 connectivity between them and verifying connectivity by
means of ICMP packets.

8.1.18.2. References

	OpenStack Shade

	https://docs.openstack.org/shade/latest/user/index.html

	SSHClient

	http://docs.paramiko.org/en/2.2/

	SCPClient

	https://pypi.org/project/scp/

8.1.18.3. Definitions and Abbreviations

The following terms and abbreviations are used in conjunction with this test
area

	ICMP - Internet Control Message Protocol

	L3 - Layer 3

	NFVi - Network Functions Virtualization infrastructure

	SCP - Secure CoPy

	SSH - Secure SHell

	VM - Virtual Machine

8.1.18.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.18.5. Test Area Structure

The test area is structured in two separate tests which are executed
sequentially. The order of the tests is arbitrary as there are no dependencies
across the tests.

8.1.18.6. Test Descriptions

8.1.18.6.1. Test Case 1 - vPing using userdata provided by nova metadata service

8.1.18.6.1.1. Short name

functest.vping.userdata

8.1.18.6.1.2. Use case specification

This test evaluates the use case where an NFVi tenant boots up two VMs and
requires L3 connectivity between those VMs. The target IP is passed to the VM
that will initiate pings by using a custom userdata script provided by nova metadata service.

8.1.18.6.1.3. Test preconditions

At least one compute node is available. No further pre-configuration needed.

8.1.18.6.1.4. Basic test flow execution description and pass/fail criteria

8.1.18.6.1.4.1. Methodology for verifying connectivity

Connectivity between VMs is tested by sending ICMP ping packets between
selected VMs. The target IP is passed to the VM sending pings by using a
custom userdata script by means of the config driver mechanism provided by
Nova metadata service. Whether or not a ping was successful is determined by
checking the console output of the source VMs.

8.1.18.6.1.4.2. Test execution

	
	Test action 1:
	
	Create a private tenant network by using neutron client

	Create one subnet and one router in the network by neutron client

	Add one interface between the subnet and router

	Add one gateway route to the router by neutron client

	Store the network id in the response

	Test assertion 1: The network id, subnet id and router id can be found in the response

	
	Test action 2:
	
	Create an security group by using neutron client

	Store the security group id parameter in the response

	Test assertion 2: The security group id can be found in the response

	
	Test action 3:
	
	Boot VM1 by using nova client with configured name, image, flavor, private tenant
network created in test action 1 and security group created in test action 2

	Test assertion 3: The VM1 object can be found in the response

	
	Test action 4:
	
	Generate ping script with the IP of VM1 to be passed as userdata provided by
the nova metadata service

	
	Test action 5:
	
	Boot VM2 by using nova client with configured name, image, flavor, private tenant
network created in test action 1, security group created in test action 2, and
userdata created in test action 4

	Test assertion 4: The VM2 object can be found in the response

	
	Test action 6:
	
	Inside VM2, the ping script is executed automatically when booted and it contains a
loop doing the ping until the return code is 0 or timeout reached

	For each ping, when the return code is 0, “vPing OK” is printed in the VM2 console-log,
otherwise, “vPing KO” is printed

	Monitoring the console-log of VM2 to see the response generated by the script

	Test assertion 5: “vPing OK” is detected, when monitoring the console-log in VM2

	
	Test action 7:
	
	Delete VM1, VM2

	Test assertion 6: VM1 and VM2 are not present in the VM list

	
	Test action 8:
	
	Delete security group, gateway, interface, router, subnet and network

	Test assertion 7: The security group, gateway, interface, router, subnet and network are
no longer present in the lists after deleting

8.1.18.6.1.4.3. Pass / Fail criteria

This test evaluates basic NFVi capabilities of the system under test.
Specifically, the test verifies that:

	Neutron client network, subnet, router, interface create commands return valid “id” parameters
which are shown in the create response message

	Neutron client interface add command to add between subnet and router returns success code

	Neutron client gateway add command to add to router returns success code

	Neutron client security group create command returns valid “id” parameter which is shown in
the response message

	Nova client VM create command returns valid VM attributes response message

	Nova metadata server can transfer userdata configuration at nova client VM booting time

	Ping command from one VM to the other in same private tenant network returns valid code

	All items created using neutron client or nova client create commands are able to be removed by
using the returned identifiers

In order to pass this test, all test assertions listed in the test execution
above need to pass.

8.1.18.6.1.5. Post conditions

None

8.1.18.6.2. Test Case 2 - vPing using SSH to a floating IP

8.1.18.6.2.1. Short name

functest.vping.ssh

8.1.18.6.2.2. Use case specification

This test evaluates the use case where an NFVi tenant boots up two VMs and requires
L3 connectivity between those VMs. An SSH connection is establised from the host to
a floating IP associated with VM2 and ping is executed on VM2 with the IP of VM1 as target.

8.1.18.6.2.3. Test preconditions

At least one compute node is available. There should exist an OpenStack external network
and can assign floating IP.

8.1.18.6.2.4. Basic test flow execution description and pass/fail criteria

8.1.18.6.2.4.1. Methodology for verifying connectivity

Connectivity between VMs is tested by sending ICMP ping packets between
selected VMs. To this end, the test establishes an SSH connection from the host
running the test suite to a floating IP associated with VM2 and executes ping
on VM2 with the IP of VM1 as target.

8.1.18.6.2.4.2. Test execution

	
	Test action 1:
	
	Create a private tenant network by neutron client

	Create one subnet and one router are created in the network by using neutron client

	Create one interface between the subnet and router

	Add one gateway route to the router by neutron client

	Store the network id in the response

	Test assertion 1: The network id, subnet id and router id can be found in the response

	
	Test action 2:
	
	Create an security group by using neutron client

	Store the security group id parameter in the response

	Test assertion 2: The security group id can be found in the response

	
	Test action 3:
	
	Boot VM1 by using nova client with configured name, image, flavor, private tenant
network created in test action 1 and security group created in test action 2

	Test assertion 3: The VM1 object can be found in the response

	
	Test action 4:
	
	Boot VM2 by using nova client with configured name, image, flavor, private tenant
network created in test action 1 and security group created in test action 2

	Test assertion 4: The VM2 object can be found in the response

	
	Test action 5:
	
	Create one floating IP by using neutron client, storing the floating IP address
returned in the response

	Test assertion 5: Floating IP address can be found in the response

	
	Test action 6:
	
	Assign the floating IP address created in test action 5 to VM2 by using nova client

	Test assertion 6: The assigned floating IP can be found in the VM2 console log file

	
	Test action 7:
	
	Establish SSH connection between the test host and VM2 through the floating IP

	Test assertion 7: SSH connection between the test host and VM2 is established within
300 seconds

	
	Test action 8:
	
	Copy the Ping script from the test host to VM2 by using SCPClient

	Test assertion 8: The Ping script can be found inside VM2

	
	Test action 9:
	
	Inside VM2, to execute the Ping script to ping VM1, the Ping script contains a
loop doing the ping until the return code is 0 or timeout reached

	For each ping, when the return code is 0, “vPing OK” is printed in the VM2 console-log,
otherwise, “vPing KO” is printed

	Monitoring the console-log of VM2 to see the response generated by the script

	Test assertion 9: “vPing OK” is detected, when monitoring the console-log in VM2

	
	Test action 10:
	
	Delete VM1, VM2

	Test assertion 10: VM1 and VM2 are not present in the VM list

	
	Test action 11:
	
	Delete floating IP, security group, gateway, interface, router, subnet and network

	Test assertion 11: The security group, gateway, interface, router, subnet and network are
no longer present in the lists after deleting

8.1.18.6.2.4.3. Pass / Fail criteria

This test evaluates basic NFVi capabilities of the system under test.
Specifically, the test verifies that:

	Neutron client network, subnet, router, interface create commands return valid “id” parameters
which are shown in the create response message

	Neutron client interface add command to add between subnet and router return success code

	Neutron client gateway add command to add to router return success code

	Neutron client security group create command returns valid “id” parameter which is shown in the
response message

	Nova client VM create command returns valid VM attributes response message

	Neutron client floating IP create command return valid floating IP address

	Nova client add floating IP command returns valid response message

	SSH connection can be established using a floating IP

	Ping command from one VM to another in same private tenant network returns valid code

	All items created using neutron client or nova client create commands are able to be removed by
using the returned identifiers

In order to pass this test, all test assertions listed in the test execution
above need to pass.

8.1.18.6.2.5. Post conditions

None

8.1.19. VPN test specification

8.1.19.1. Scope

The VPN test area evaluates the ability of the system under test to support VPN
networking for virtual workloads. This test area tests CRUD (Create, Read, Update,
Delete) operations of BGPVPN API.

8.1.19.2. References

This test area evaluates the ability of the system to perform selected actions
defined in the following specifications. Details of specific features evaluated
are described in the test descriptions.

	RFC 4364 - BGP/MPLS IP Virtual Private Networks

	https://tools.ietf.org/html/rfc4364

	RFC 4659 - BGP-MPLS IP Virtual Private Network

	https://tools.ietf.org/html/rfc4659

	RFC 2547 - BGP/MPLS VPNs

	https://tools.ietf.org/html/rfc2547

8.1.19.3. Definitions and abbreviations

The following terms and abbreviations are used in conjunction with this test
area

	BGP - Border gateway protocol

	NFVi - Network functions virtualization infrastructure

	VM - Virtual machine

	VPN - Virtual private network

8.1.19.4. System Under Test (SUT)

The system under test is assumed to be the NFVi and VIM in operation on a
Pharos compliant infrastructure.

8.1.19.5. Test Area Structure

The test area is structured in several tempest tests which are executed
sequentially. The order of the tests is arbitrary as there are no dependencies
across the tests. Specifially, every test performs clean-up operations which
return the system to the same state as before the test.

8.1.19.6. Test Descriptions

8.1.19.6.1. Test Case 1 - Tempest API CRUD Tests

8.1.19.6.1.1. Short Name

functest.tempest.bgpvpn

8.1.19.6.1.2. Use case specification

This test case combines multiple CRUD (Create, Read, Update, Delete) tests for
the objects defined by the BGPVPN API extension of Neutron.

These tests are implemented in the upstream networking-bgpvpn project repository [https://github.com/openstack/networking-bgpvpn] as a Tempest plugin.

8.1.19.6.1.3. Test preconditions

The VIM is operational and the networking-bgpvpn service plugin for Neutron is
correctly configured and loaded. At least one compute node is available.

8.1.19.6.1.4. Basic test flow execution description and pass/fail criteria

List of test cases

	networking_bgpvpn_tempest.tests.api.test_create_bgpvpn

	networking_bgpvpn_tempest.tests.api.test_create_bgpvpn_as_non_admin_fail

	networking_bgpvpn_tempest.tests.api.test_delete_bgpvpn_as_non_admin_fail

	networking_bgpvpn_tempest.tests.api.test_show_bgpvpn_as_non_owner_fail

	networking_bgpvpn_tempest.tests.api.test_list_bgpvpn_as_non_owner_fail

	networking_bgpvpn_tempest.tests.api.test_show_netassoc_as_non_owner_fail

	networking_bgpvpn_tempest.tests.api.test_list_netassoc_as_non_owner_fail

	networking_bgpvpn_tempest.tests.api.test_associate_disassociate_network

	networking_bgpvpn_tempest.tests.api.test_update_route_target_non_admin_fail

	networking_bgpvpn_tempest.tests.api.test_create_bgpvpn_with_invalid_routetargets

	networking_bgpvpn_tempest.tests.api.test_update_bgpvpn_invalid_routetargets

	networking_bgpvpn_tempest.tests.api.test_associate_invalid_network

	networking_bgpvpn_tempest.tests.api.test_disassociate_invalid_network

	networking_bgpvpn_tempest.tests.api.test_associate_disassociate_router

	networking_bgpvpn_tempest.tests.api.test_attach_associated_subnet_to_associated_router

The tests include both positive tests and negative tests. The latter are
identified with the suffix “_fail” in their name.

8.1.19.6.1.4.1. Test execution

The tests are executed sequentially and a separate pass/fail result is recorded
per test.

In general, every test case performs the API operations indicated in its name
and asserts that the action succeeds (positive test) or a specific exception
is triggered (negative test). The following describes the test execution
per test in further detail.

8.1.19.6.1.4.1.1. networking_bgpvpn_tempest.tests.api.test_create_bgpvpn

	Create a BGPVPN as an admin.

	Test assertion: The API call succeeds.

8.1.19.6.1.4.1.2. networking_bgpvpn_tempest.tests.api.test_create_bgpvpn_as_non_admin_fail

	Attempt to create a BGPVPN as non-admin.

	Test assertion: Creating a BGPVPN as non-admin fails.

8.1.19.6.1.4.1.3. networking_bgpvpn_tempest.tests.api.test_delete_bgpvpn_as_non_admin_fail

	Create BGPVPN vpn1 as admin.

	Attempt to delete vpn1 as non-admin.

	Test assertion: The deletion of vpn1 as non-admin fails.

8.1.19.6.1.4.1.4. networking_bgpvpn_tempest.tests.api.test_show_bgpvpn_as_non_owner_fail

	Create a BGPVPN vpn1 as admin in project1.

	Test assertion: Attempting to retrieve detailed properties of vpn1
in project2 fails.

8.1.19.6.1.4.1.5. networking_bgpvpn_tempest.tests.api.test_list_bgpvpn_as_non_owner_fail

	Create a BGPVPN vpn1 as admin in project1.

	Retrieve a list of all BGPVPNs in project2.

	Test assertion: The list of BGPVPNs retrieved in project2 does not
include vpn1.

8.1.19.6.1.4.1.6. networking_bgpvpn_tempest.tests.api.test_show_netassoc_as_non_owner_fail

	Create BGPVPN vpn1 as admin in project1.

	Associate vpn1 with a Neutron network in project1

	Test assertion: Retrieving detailed properties of the network association
fails in project2.

8.1.19.6.1.4.1.7. networking_bgpvpn_tempest.tests.api.test_list_netassoc_as_non_owner_fail

	Create BGPVPN vpn1 as admin in project1.

	Create network association net-assoc1 with vpn1 and Neutron network net1
in project1.

	Retrieve a list of all network associations in project2.

	Test assertion: The retrieved list of network associations does not
include network association net-assoc1.

8.1.19.6.1.4.1.8. networking_bgpvpn_tempest.tests.api.test_associate_disassociate_network

	Create a BGPVPN vpn1 as admin.

	Associate vpn1 with a Neutron network net1.

	Test assertion: The metadata of vpn1 includes the UUID of net1.

	Diassociate vpn1 from the Neutron network.

	Test assertion: The metadata of vpn1 does not include the UUID of net1.

8.1.19.6.1.4.1.9. networking_bgpvpn_tempest.tests.api.test_update_route_target_non_admin_fail

	Create a BGPVPN vpn1 as admin with specific route targets.

	Attempt to update vpn1 with different route targets as non-admin.

	Test assertion: The update fails.

8.1.19.6.1.4.1.10. networking_bgpvpn_tempest.tests.api.test_create_bgpvpn_with_invalid_routetargets

	Attempt to create a BGPVPN as admin with invalid route targets.

	Test assertion: The creation of the BGPVPN fails.

8.1.19.6.1.4.1.11. networking_bgpvpn_tempest.tests.api.test_update_bgpvpn_invalid_routetargets

	Create a BGPVPN vpn1 as admin with empty route targets.

	Attempt to update vpn1 with invalid route targets.

	Test assertion: The update of the route targets fails.

8.1.19.6.1.4.1.12. networking_bgpvpn_tempest.tests.api.test_associate_invalid_network

	Create BGPVPN vpn1 as admin.

	Attempt to associate vpn1 with a non-existing Neutron network.

	Test assertion: Creating the network association fails.

8.1.19.6.1.4.1.13. networking_bgpvpn_tempest.tests.api.test_disassociate_invalid_network

	Create BGPVPN vpn1 as admin.

	Create network association net-assoc1 with vpn1 and Neutron network net1.

	Attempt to delete net-assoc1 with an invalid network UUID.

	Test assertion: The deletion of the net-assoc fails.

8.1.19.6.1.4.1.14. networking_bgpvpn_tempest.tests.api.test_associate_disassociate_router

	Create a BGPVPN vpn1 as admin.

	Associate vpn1 with a Neutron router router1.

	Test assertion: The metadata of vpn1 includes the UUID of router1.

	Disassociate router1 from vpn1.

	Test assertion: The metadata of vpn1 does not include the UUID of router1.

8.1.19.6.1.4.1.15. networking_bgpvpn_tempest.tests.api.test_attach_associated_subnet_to_associated_router

	Create BGPVPN vpn1 as admin.

	Associate vpn1 with Neutron network net1.

	Create BGPVPN vpn2

	Associate vpn2 with Neutron router router1.

	Attempt to add the subnet of net1 to router1

	Test assertion: The association fails.

8.1.19.6.1.4.2. Pass / fail criteria

This test validates that all supported CRUD operations (create, read, update,
delete) can be applied to the objects of the Neutron BGPVPN extension. In
order to pass this test, all test assertions listed in the test execution above
need to pass.

8.1.19.6.1.5. Post conditions

N/A

9. OVP Testing User Guide

	9.1. Conducting OVP NFVI Testing with Dovetail
	9.1.1. Overview

	9.1.2. Installing Dovetail

	9.1.3. Starting Dovetail Docker

	9.1.4. Running the OVP Test Suite

	9.1.5. OVP Portal Web Interface

	9.1.6. Updating Dovetail or a Test Suite

	9.2. Dovetail Command Line Interface Reference
	9.2.1. Commands List

	9.2.2. Commands Examples

	9.3. Running Dovetail by RESTful API
	9.3.1. Overview

	9.3.2. Definitions and abbreviations

	9.3.3. Environment Preparation

	9.3.4. Installing Dovetail API

	9.3.5. Using Dovetail API

	9.4. Conducting ONAP VNF Testing for OVP
	9.4.1. Overview

	9.4.2. Definitions and abbreviations

	9.4.3. Testing of HEAT based VNFs

	9.4.4. Testing of TOSCA based VNFs

9.1. Conducting OVP NFVI Testing with Dovetail

9.1.1. Overview

This guide provides the instructions for the OVP Infrastructure testing. For the
OVP VNF testing, please refer to the next section.

The Dovetail testing framework for OVP consists of two major parts: the testing client which
executes all test cases in a lab (vendor self-testing or a third party lab),
and the server system which is hosted by the OVP administrator to store and
view test results based on a web API. The following diagram illustrates
this overall framework.

[image: ../../../_images/dovetail_online_mode.png]
Within the tester’s lab, the Test Host is the machine where Dovetail executes all
automated test cases. As it hosts the test harness, the Test Host must not be part of
the System Under Test (SUT) itself.
The above diagram assumes that the tester’s Test Host is situated in a DMZ, which
has internal network access to the SUT and external access via the public Internet.
The public Internet connection allows for easy installation of the Dovetail containers.
A single compressed file that includes all the underlying results can be pulled from
the Test Host and uploaded to the OPNFV OVP server.
This arrangement may not be supported in some labs. Dovetail also supports an offline mode of
installation which is illustrated in the next diagram.

[image: ../../../_images/dovetail_offline_mode.png]
In the offline mode, the Test Host only needs to have access to the SUT
via the internal network, but does not need to connect to the public Internet. This
user guide will highlight differences between the online and offline modes of
the Test Host. While it is possible to run the Test Host as a virtual machine,
this user guide assumes it is a physical machine for simplicity.

The rest of this guide will describe how to install the Dovetail tool as a
Docker container image, go over the steps of running the OVP test suite, and
then discuss how to view test results and make sense of them.

Readers interested in using Dovetail for its functionalities beyond OVP testing, e.g. for in-house
or extended testing, should consult the Dovetail developer’s guide for additional
information.

9.1.2. Installing Dovetail

In this section, we describe the procedure to install Dovetail client tool on the Test Host.
The Test Host must have network access to the management network with access rights to
the Virtual Infrastructure Manager’s API.

9.1.2.1. Checking the Test Host Readiness

The Test Host must have network access to the Virtual Infrastructure Manager’s API
hosted in the SUT so that the Dovetail tool can exercise the API from the Test Host.
It must also have ssh access to the Linux operating system
of the compute nodes in the SUT. The ssh mechanism is used by some test cases
to generate test events in the compute nodes. You can find out which test cases
use this mechanism in the test specification document.

We have tested the Dovetail tool on the following host operating systems. Other versions
or distributions of Linux may also work, but community support may be more available on
these versions.

	Ubuntu 16.04.2 LTS (Xenial) or 14.04 LTS (Trusty)

	CentOS-7-1611

	Red Hat Enterprise Linux 7.3

	Fedora 24 or 25 Server

Use of Ubuntu 16.04 is highly recommended, as it has been most widely employed during testing.
Non-Linux operating systems, such as Windows and Mac OS, have not been tested
and are not supported.

If online mode is used, the tester should also validate that the Test Host can reach
the public Internet. For example,

$ ping www.opnfv.org
PING www.opnfv.org (50.56.49.117): 56 data bytes
64 bytes from 50.56.49.117: icmp_seq=0 ttl=48 time=52.952 ms
64 bytes from 50.56.49.117: icmp_seq=1 ttl=48 time=53.805 ms
64 bytes from 50.56.49.117: icmp_seq=2 ttl=48 time=53.349 ms
...

Or, if the lab environment does not allow ping, try validating it using HTTPS instead.

$ curl https://www.opnfv.org
<!doctype html>

<html lang="en-US" class="no-js">
<head>
...

9.1.2.2. Installing Prerequisite Packages on the Test Host

The main prerequisite software for Dovetail is Docker.

Dovetail does not work with Docker versions prior to 1.12.3. We have validated
Dovetail with Docker 17.03 CE. Other versions of Docker later than 1.12.3 may
also work, but community support may be more available on Docker 17.03 CE or greater.

$ sudo docker version
Client:
Version: 17.03.1-ce
API version: 1.27
Go version: go1.7.5
Git commit: c6d412e
Built: Mon Mar 27 17:10:36 2017
OS/Arch: linux/amd64

Server:
Version: 17.03.1-ce
API version: 1.27 (minimum version 1.12)
Go version: go1.7.5
Git commit: c6d412e
Built: Mon Mar 27 17:10:36 2017
OS/Arch: linux/amd64
Experimental: false

If your Test Host does not have Docker installed, or Docker is older than 1.12.3,
or you have Docker version other than 17.03 CE and wish to change,
you will need to install, upgrade, or re-install in order to run Dovetail.
If you need further assistance with Docker installation process, you should refer to the official
Docker installation guide that is relevant to your Test Host’s operating system.

The above installation steps assume that the Test Host is in the online mode.
For offline testing, use the following offline installation steps instead.
For instance, download Docker static binaries and copy the tar file to the
Test Host, such as for Ubuntu14.04, you may follow the following link:

https://github.com/meetyg/docker-offline-install

9.1.2.3. Configuring the Test Host Environment

The Test Host needs a few environment variables set correctly in order to access the
OpenStack API which is required to drive the Dovetail tests. For convenience and as a convention,
we will also create a home directory for storing all Dovetail related config files and
results files:

$ mkdir -p ${HOME}/dovetail
$ export DOVETAIL_HOME=${HOME}/dovetail

For example, here we set dovetail home directory to be ${HOME}/dovetail.
Then create two directories named pre_config and images under this directory
to store all Dovetail related config files and all test images respectively:

$ mkdir -p ${DOVETAIL_HOME}/pre_config
$ mkdir -p ${DOVETAIL_HOME}/images

9.1.2.4. Setting up Primary Configuration File

At this point, you will need to consult your SUT (OpenStack) administrator to correctly set
the configurations in a file named env_config.sh.
The OpenStack settings need to be configured such that the Dovetail client has all the necessary
credentials and privileges to execute all test operations. If the SUT uses terms
somewhat differently from the standard OpenStack naming, you will need to adjust
this file accordingly.

Create and edit the file ${DOVETAIL_HOME}/pre_config/env_config.sh so that
all parameters are set correctly to match your SUT. Here is an example of what
this file should contain.

$ cat ${DOVETAIL_HOME}/pre_config/env_config.sh

Project-level authentication scope (name or ID), admin project is recommended.
export OS_PROJECT_NAME=admin

Authentication username, belongs to the project above, admin user is recommended.
export OS_USERNAME=admin

Authentication password. Use your own password
export OS_PASSWORD=xxxxxxxx

Authentication URL, one of the endpoints of keystone service. If this is v3 version,
there needs some extra variables as follows.
export OS_AUTH_URL='http://xxx.xxx.xxx.xxx:5000/v3'

Default is 2.0. If use keystone v3 API, this should be set as 3.
export OS_IDENTITY_API_VERSION=3

Domain name or ID containing the user above.
Command to check the domain: openstack user show <OS_USERNAME>
export OS_USER_DOMAIN_NAME=default

Domain name or ID containing the project above.
Command to check the domain: openstack project show <OS_PROJECT_NAME>
export OS_PROJECT_DOMAIN_NAME=default

Special environment parameters for https.
If using https + cacert, the path of cacert file should be provided.
The cacert file should be put at $DOVETAIL_HOME/pre_config.
export OS_CACERT=/path/to/pre_config/cacert.pem

If using https + no cacert, should add OS_INSECURE environment parameter.
export OS_INSECURE=True

The name of a network with external connectivity for allocating floating
IPs. It is required that at least one Neutron network with the attribute
'router:external=True' is pre-configured on the system under test.
This network is used by test cases to SSH into tenant VMs and perform
operations there.
export EXTERNAL_NETWORK=xxx

Set an existing role used to create project and user for vping test cases.
Otherwise, it will create a role 'Member' to do that.
export NEW_USER_ROLE=xxx

For XCI installer the following environment parameters should be added in
this file. Otherwise, those parameters could be ignored.
export INSTALLER_TYPE=osa
export DEPLOY_SCENARIO=os-nosdn-nofeature
export XCI_FLAVOR=noha

The OS_AUTH_URL variable is key to configure correctly, as the other admin services
are collected from the identity service. HTTPS should be configured in the SUT so
either OS_CACERT or OS_INSECURE should be uncommented.
However, if SSL is disabled in the SUT, comment out both OS_CACERT and OS_INSECURE variables.
Ensure the ‘/path/to/pre_config’ directory in
the above file matches the directory location of the cacert file for the OS_CACERT variable.

The next three sections outline additional configuration files used by Dovetail. The
tempest (tempest_conf.yaml) configuration file is required for executing all tempest
test cases (e.g. functest.tempest.compute, functest.tempest.ipv6 …) and
functest.security.patrole. The HA (pod.yaml) configuration
file is required for HA test cases and is also employed to collect SUT hardware
info. The hosts.yaml is optional for hostname/IP resolution.

9.1.2.5. Configuration for Running Tempest Test Cases (Mandatory)

The test cases in the test areas tempest and security
are based on Tempest. A SUT-specific configuration of
Tempest is required in order to run those test cases successfully. The
corresponding SUT-specific configuration options must be supplied in the file
$DOVETAIL_HOME/pre_config/tempest_conf.yaml.

Create and edit file $DOVETAIL_HOME/pre_config/tempest_conf.yaml.
Here is an example of what this file should contain.

compute:
 # The minimum number of compute nodes expected.
 # This should be no less than 2 and no larger than the compute nodes the SUT actually has.
 min_compute_nodes: 2

 # Expected device name when a volume is attached to an instance.
 volume_device_name: vdb

 # One sub test case of functest.tempest.osinterop will be skipped if not provide this version.
 # The default range of microversion for tempest is [None - None].
 # Test case functest.tempest.osinterop required the range to be [2.2 - latest].
 max_microversion: 2.65

Use the listing above as a minimum to execute the mandatory test cases.

If the optional BGPVPN Tempest API tests shall be run, Tempest needs to be told
that the BGPVPN service is available. To do that, add the following to the
$DOVETAIL_HOME/pre_config/tempest_conf.yaml configuration file:

service_available:
 bgpvpn: True

9.1.2.6. Configuration for Running HA Test Cases (Mandatory)

The HA test cases require OpenStack controller node info. It must include the node’s
name, role, ip, as well as the user and key_filename or password to login to the node. Users
must create the file ${DOVETAIL_HOME}/pre_config/pod.yaml to store the info.
For some HA test cases, they will log in the controller node ‘node1’ and kill the specific processes.
The names of the specific processes may be different with the actual ones of the SUTs.
The processes’ names can also be changed with file ${DOVETAIL_HOME}/pre_config/pod.yaml.

This file is also used as a basis to collect SUT hardware information which is stored alongside results and
uploaded to the OVP web portal. The SUT hardware information can be viewed within the
‘My Results’ view in the OVP web portal by clicking the SUT column ‘info’ link. In order to
collect SUT hardware information holistically, ensure this file has an entry for each of
the controller and compute nodes within the SUT.

Below is a sample with the required syntax when password is employed by the controller.

nodes:
-
 # This info of node0 is used only for one optional test case 'yardstick.ha.controller_restart'.
 # If you don't plan to test it, this Jumpserver node can be ignored.
 # This can not be changed and **must** be node0.
 name: node0

 # This **must** be Jumpserver.
 role: Jumpserver

 # This is the instance IP of a node which has ipmitool installed.
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: root

 # Password of the user.
 password: root

-
 # Almost all HA test cases are trying to login to a controller node named 'node1'
 # and then kill some processes running on it.
 # If you don't want to reset the attack node name for each test case, this
 # name can not be changed and **must** be node1.
 name: node1

 # This **must** be controller.
 role: Controller

 # This is the instance IP of a controller node, which is the haproxy primary node
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: root

 # Password of the user.
 password: root

process_info:
-
 # For all HA test cases, there are 2 parameters, 'attack_process' and 'attack_host',
 # which support to be set by users instead of using the default values.
 # The 'attack_process' is the process name of one HA test case which it try to kill.
 # The 'attack_host' is the host name which the test case try to login and then kill
 # the process running on it.
 # Fllowing is 2 samples.

 # The default attack process of yardstick.ha.rabbitmq is 'rabbitmq-server'.
 # Here can be reset to 'rabbitmq'.
 testcase_name: yardstick.ha.rabbitmq
 attack_process: rabbitmq

-
 # The default attack host for all HA test cases is 'node1'.
 # Here can be reset to any other node given in the section 'nodes'.
 testcase_name: yardstick.ha.glance_api
 attack_host: node2

Besides the ‘password’, a ‘key_filename’ entry can be provided to login to the controller node.
Users need to create file $DOVETAIL_HOME/pre_config/id_rsa to store the private key.
A sample is provided below to show the required syntax when using a key file.

nodes:
-
 name: node1
 role: Controller
 ip: 10.1.0.50
 user: root

 # Private ssh key for accessing the controller nodes. If a keyfile is
 # being used instead of password, it **must** be put under
 # $DOVETAIL_HOME/pre_config/ and named 'id_rsa'.
 key_filename: /home/dovetail/pre_config/id_rsa

Under nodes, repeat entries for name, role, ip, user and password or key file for each of the
controller/compute nodes that comprise the SUT. Use a ‘-‘ to separate each of the entries.
Specify the value for the role key to be either ‘Controller’ or ‘Compute’ for each node.

Under process_info, repeat entries for testcase_name, attack_host and attack_process
for each HA test case. Use a ‘-‘ to separate each of the entries.
The default attack host of all HA test cases is node1.
The default attack processes of all HA test cases are list here:

	Test Case Name

	Attack Process Name

	yardstick.ha.cinder_api

	cinder-api

	yardstick.ha.database

	mysql

	yardstick.ha.glance_api

	glance-api

	yardstick.ha.haproxy

	haproxy

	yardstick.ha.keystone

	keystone

	yardstick.ha.neutron_l3_agent

	neutron-l3-agent

	yardstick.ha.neutron_server

	neutron-server

	yardstick.ha.nova_api

	nova-api

	yardstick.ha.rabbitmq

	rabbitmq-server

9.1.2.7. Configuration of Hosts File (Optional)

If your SUT uses a hosts file to translate hostnames into the IP of OS_AUTH_URL, then you need
to provide the hosts info in a file $DOVETAIL_HOME/pre_config/hosts.yaml.

Create and edit file $DOVETAIL_HOME/pre_config/hosts.yaml. Below is an example of what
this file should contain. Note that multiple hostnames can be specified for each IP address,
as shown in the generic syntax below the example.

$ cat ${DOVETAIL_HOME}/pre_config/hosts.yaml

hosts_info:
 192.168.141.101:
 - identity.endpoint.url
 - compute.endpoint.url

 <ip>:
 - <hostname1>
 - <hostname2>

9.1.2.8. Installing Dovetail on the Test Host

The Dovetail project maintains a Docker image that has Dovetail test tools preinstalled.
This Docker image is tagged with versions. Before pulling the Dovetail image, check the
OPNFV’s OVP web page first to determine the right tag for OVP testing.

9.1.2.8.1. Online Test Host

If the Test Host is online, you can directly pull Dovetail Docker image, then all
other dependent docker images will automatically be downloaded. Also you can download
other related VM images such as Ubuntu and Cirros images which are used by Dovetail
for image creation and VM instantiation within the SUT.

Following given the download url for each VM images. Cirros-0.4.0 and Ubuntu-16.04
are used by mandatory test cases, so they are the only 2 images must be downloaded
before doing the test. There are also 2 other optional VM images, Ubuntu-14.04 and
Cloudify-manager, which are used by optional test cases functest.vnf.vepc and functest.vnf.vims.
If you don’t plan to test these 2 test cases, you can skip downloading these 2 images.

$ wget -nc http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img -P ${DOVETAIL_HOME}/images
$ wget -nc https://cloud-images.ubuntu.com/releases/16.04/release/ubuntu-16.04-server-cloudimg-amd64-disk1.img -P ${DOVETAIL_HOME}/images
$ wget -nc https://cloud-images.ubuntu.com/releases/14.04/release/ubuntu-14.04-server-cloudimg-amd64-disk1.img -P ${DOVETAIL_HOME}/images
$ wget -nc http://repository.cloudifysource.org/cloudify/19.01.24/community-release/cloudify-docker-manager-community-19.01.24.tar -P ${DOVETAIL_HOME}/images

$ sudo docker pull opnfv/dovetail:ovp-3.0.0
ovp-3.0.0: Pulling from opnfv/dovetail
324d088ce065: Pull complete
2ab951b6c615: Pull complete
9b01635313e2: Pull complete
04510b914a6c: Pull complete
83ab617df7b4: Pull complete
40ebbe7294ae: Pull complete
d5db7e3e81ae: Pull complete
0701bf048879: Pull complete
0ad9f4168266: Pull complete
d949894f87f6: Pull complete
Digest: sha256:7449601108ebc5c40f76a5cd9065ca5e18053be643a0eeac778f537719336c29
Status: Downloaded newer image for opnfv/dovetail:ovp-3.0.0

9.1.2.8.2. Offline Test Host

If the Test Host is offline, you will need to first pull the Dovetail Docker image and all the
dependent images that Dovetail uses, to a host that is online. The reason that you need
to pull all dependent images is because Dovetail normally does dependency checking at run-time
and automatically pulls images as needed, if the Test Host is online. If the Test Host is
offline, then all these dependencies will need to be manually copied.

The Docker images, Ubuntu and Cirros image below are necessary for all mandatory test cases.

$ sudo docker pull opnfv/dovetail:ovp-3.0.0
$ sudo docker pull opnfv/functest-smoke:hunter
$ sudo docker pull opnfv/functest-healthcheck:hunter
$ sudo docker pull opnfv/yardstick:opnfv-8.0.0
$ sudo docker pull opnfv/bottlenecks:8.0.1-latest
$ wget -nc http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img -P {ANY_DIR}
$ wget -nc https://cloud-images.ubuntu.com/releases/16.04/release/ubuntu-16.04-server-cloudimg-amd64-disk1.img -P ${DOVETAIL_HOME}/images

The other Docker images and test images below are only used by optional test cases.

$ sudo docker pull opnfv/functest-vnf:hunter
$ wget -nc https://cloud-images.ubuntu.com/releases/14.04/release/ubuntu-14.04-server-cloudimg-amd64-disk1.img -P {ANY_DIR}
$ wget -nc http://repository.cloudifysource.org/cloudify/19.01.24/community-release/cloudify-docker-manager-community-19.01.24.tar -P ${DOVETAIL_HOME}/images

Once all these images are pulled, save the images, copy them to the Test Host, and then load
the Dovetail image and all dependent images at the Test Host.

At the online host, save the images with the command below.

$ sudo docker save -o dovetail.tar opnfv/dovetail:ovp-3.0.0 \
 opnfv/functest-smoke:hunter opnfv/functest-healthcheck:hunter \
 opnfv/functest-vnf:hunter \
 opnfv/yardstick:opnfv-8.0.0 opnfv/bottlenecks:8.0.1-latest

The command above creates a dovetail.tar file with all the images, which can then be copied
to the Test Host. To load the Dovetail images on the Test Host execute the command below.

$ sudo docker load --input dovetail.tar

Now check to see that all Docker images have been pulled or loaded properly.

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
opnfv/dovetail ovp-3.0.0 4b68659da24d 22 hours ago 825MB
opnfv/functest-smoke hunter c0253f6de153 3 weeks ago 556MB
opnfv/functest-healthcheck hunter fb6d766e38e0 3 weeks ago 379MB
opnfv/functest-vnf hunter 31466d52d155 21 hours ago 1.1GB
opnfv/yardstick opnfv-8.0.0 189d7d9fbcb2 7 months ago 2.54GB
opnfv/bottlenecks 8.0.1-latest 44c1b9fb25aa 5 hours ago 837MB

After copying and loading the Dovetail images at the Test Host, also copy the test images
(Ubuntu, Cirros and cloudify-manager) to the Test Host.

	Copy image cirros-0.4.0-x86_64-disk.img to ${DOVETAIL_HOME}/images/.

	Copy image ubuntu-14.04-server-cloudimg-amd64-disk1.img to ${DOVETAIL_HOME}/images/.

	Copy image ubuntu-16.04-server-cloudimg-amd64-disk1.img to ${DOVETAIL_HOME}/images/.

	Copy image cloudify-docker-manager-community-19.01.24.tar to ${DOVETAIL_HOME}/images/.

9.1.3. Starting Dovetail Docker

Regardless of whether you pulled down the Dovetail image directly online, or loaded it from
a static image tar file, you are now ready to run Dovetail. Use the command below to
create a Dovetail container and get access to its shell.

$ sudo docker run --privileged=true -it \
 -e DOVETAIL_HOME=$DOVETAIL_HOME \
 -v $DOVETAIL_HOME:$DOVETAIL_HOME \
 -v /var/run/docker.sock:/var/run/docker.sock \
 opnfv/dovetail:<tag> /bin/bash

The -e option sets the DOVETAIL_HOME environment variable in the container
and the -v options mounts files from the test host to the destination path
inside the container. The latter option allows the Dovetail container to read
the configuration files and write result files into DOVETAIL_HOME on the Test
Host. The user should be within the Dovetail container shell, once the command
above is executed.

9.1.4. Running the OVP Test Suite

All or a subset of the available tests can be executed at any location within the
Dovetail container prompt. You can refer to Dovetail Command Line Interface Reference
for the details of the CLI.

$ dovetail run --testsuite <test-suite-name>

The --testsuite option is used to control the set of tests intended for execution
at a high level. For the purposes of running the OVP test suite, the test suite name follows
the following format, ovp.<release-version>. The latest and default test suite is
ovp.2019.12.

$ dovetail run

This command is equal to

$ dovetail run --testsuite ovp.2019.12

Without any additional options, the above command will attempt to execute all mandatory and
optional test cases with test suite ovp.2019.12.
To restrict the breadth of the test scope, it can also be specified using options
--mandatory or --optional.

$ dovetail run --mandatory

Also there is a --testcase option provided to run a specified test case.

$ dovetail run --testcase functest.tempest.osinterop

Dovetail allows the user to disable strict API response validation implemented
by Nova Tempest tests by means of the --no-api-validation option. Usage of
this option is only advisable if the SUT returns Nova API responses that
contain additional attributes. For more information on this command line option
and its intended usage, refer to
Disabling Strict API Validation in Tempest.

$ dovetail run --testcase functest.tempest.osinterop --no-api-validation

By default, during test case execution, the respective feature is responsible to
decide what flavor is going to use for the execution of each test scenario which is under
of its umbrella.
In parallel, there is also implemented a mechanism in order for the extra specs in flavors of
executing test scenarios to be hugepages instead of the default option.
This is happening if the name of the scenario contains the substring “ovs”.
In this case, the flavor which is going to be used for the running test case has
‘hugepage’ characteristics.

Taking the above into consideration and having in mind that the DEPLOY_SCENARIO
environment parameter is not used by dovetail framework (the initial value is ‘unknown’),
we set as input, for the features that they are responsible for the test case execution,
the DEPLOY_SCENARIO environment parameter having as substring the feature name “ovs”
(e.g. os-nosdn-ovs-ha).

	Note for the users:
	
	if their system uses DPDK, they should run with --deploy-scenario <xx-yy-ovs-zz>
(e.g. os-nosdn-ovs-ha)

	this is an experimental feature

$ dovetail run --testcase functest.tempest.osinterop --deploy-scenario os-nosdn-ovs-ha

By default, results are stored in local files on the Test Host at $DOVETAIL_HOME/results.
Each time the ‘dovetail run’ command is executed, the results in the aforementioned directory
are overwritten. To create a singular compressed result file for upload to the OVP portal or
for archival purposes, the tool provides an option --report.

$ dovetail run --report

If the Test Host is offline, --offline should be added to support running with
local resources. Otherwise, it will try to download resources online during the run time.

$ dovetail run --offline

Below is an example of running one test case and the creation of the compressed
result file on the Test Host.

$ dovetail run --offline --testcase functest.vping.userdata --report
2019-12-04 07:31:13,156 - run - INFO - ==
2019-12-04 07:31:13,157 - run - INFO - Dovetail compliance: ovp.2019.12!
2019-12-04 07:31:13,157 - run - INFO - ==
2019-12-04 07:31:13,157 - run - INFO - Build tag: daily-master-0c9184e6-1668-11ea-b1cd-0242ac110002
2019-12-04 07:31:13,610 - run - INFO - >>[testcase]: functest.vping.userdata
2019-12-04 07:31:13,612 - dovetail.test_runner.DockerRunner - WARNING - There is no hosts file /home/ovp/pre_config/hosts.yaml. This may cause some issues with domain name resolution.
2019-12-04 07:31:14,587 - dovetail.test_runner.DockerRunner - INFO - Get hardware info of all nodes list in file /home/ovp/pre_config/pod.yaml ...
2019-12-04 07:31:14,587 - dovetail.test_runner.DockerRunner - INFO - Hardware info of all nodes are stored in file /home/dovetail/results/all_hosts_info.json.
2019-12-04 07:31:14,612 - dovetail.container.Container - WARNING - There is no hosts file /home/ovp/pre_config/hosts.yaml. This may cause some issues with domain name resolution.
2019-12-04 07:32:13,804 - dovetail.report.Report - INFO - Results have been stored with files: ['/home/ovp/results/functest_results.txt'].
2019-12-04 07:32:13,808 - dovetail.report.Report - INFO -

Dovetail Report
Version: 2019.12
Build Tag: daily-master-0c9184e6-1668-11ea-b1cd-0242ac110002
Test Date: 2019-12-04 07:32:13 UTC
Duration: 60.20 s

Pass Rate: 100.00% (1/1)
vping: pass rate 100.00%
-functest.vping.userdata PASS

When test execution is complete, a tar file with all result and log files is written in
$DOVETAIL_HOME on the Test Host. An example filename is
${DOVETAIL_HOME}/logs_20191204_0732.tar.gz. The file is named using a timestamp
that follows the convention ‘YearMonthDay_HourMinute’. In this case, it was generated
at 07:32 on December 4th, 2019. This tar file is used for uploading the logs and
results to the OVP portal.

9.1.4.1. Making Sense of OVP Test Results

When a tester is performing trial runs, Dovetail stores results in local files on the Test
Host by default within directory $DOVETAIL_HOME/results.

	Log file: dovetail.log

	Review the dovetail.log to see if all important information has been captured

	In default mode without DEBUG.

	Adding option -d/--debug to change the mode to be DEBUG.

	Result file: results.json

	Review the results.json to see all results data including criteria for PASS or FAIL.

	Tempest and security test cases

	Can see the log details in tempest_logs/functest.tempest.XXX.html and
security_logs/functest.security.XXX.html respectively,
which has the passed, skipped and failed test cases results.

	This kind of files need to be opened with a web browser.

	The skipped test cases are accompanied with the reason tag for the users to see why these test cases skipped.

	The failed test cases have rich debug information for the users to see why these test cases failed.

	Vping test cases

	Its log is stored in vping_logs/functest.vping.XXX.log.

	HA test cases

	Its log is stored in ha_logs/yardstick.ha.XXX.log.

	Stress test cases

	Its log is stored in stress_logs/bottlenecks.stress.XXX.log.

	VNF test cases

	Its log is stored in vnf_logs/functest.vnf.XXX.log.

9.1.5. OVP Portal Web Interface

The OVP portal is a public web interface for the community to collaborate on results
and to submit results for official OPNFV compliance verification. The portal can be used as a
resource by users to navigate and inspect results more easily than by manually
inspecting the log files. The portal also allows users to share results in a private manner
until they are ready to submit results for peer community review.

	Web Site URL

	https://nfvi-verified.lfnetworking.org

	Sign In / Sign Up Links

	Accounts are exposed through Linux Foundation.

	If you already have a Linux Foundation ID, you can sign in directly with your ID.

	If you do not have a Linux Foundation ID, you can sign up for a new one using ‘Sign Up’.

	My Results Tab

	This is the primary view where most of the workflow occurs.

	This page lists all results uploaded by you after signing in.

	Following the two steps below, the results are uploaded and in status ‘private’.

	Obtain results tar file located at ${DOVETAIL_HOME}/, e.g. logs_20180105_0858.tar.gz.

	Use the Choose File button where a file selection dialog allows you to choose your result file from the hard-disk. Then click the Upload result button and see a results ID once your upload succeeds.

	Results are remaining in status ‘private’ until they are submitted for review.

	Use the Operation column drop-down option submit to review, to expose results to
OPNFV community peer reviewers. Use the withdraw submit option to reverse this action.

	Results status are changed to be ‘review’ after submit to review.

	Use the View Reviews to find the review status including reviewers’ names and the outcome.

	The administrator will approve the results which have got 2 positive outcome from 2 reviewers.
Then the status will be changed to be ‘verified’.

	Use the Operation column drop-down option share with to share results with other
users by supplying either the login user ID or the email address associated with
the share target account. The result is exposed to the share target but remains private
otherwise.

	Profile Tab

	This page shows your account info after you sign in.

	There are 3 different roles: administrator, user and reviewer.

9.1.6. Updating Dovetail or a Test Suite

Follow the instructions in section Installing Dovetail on the Test Host and
Running the OVP Test Suite by replacing the docker images with new_tags:

sudo docker pull opnfv/dovetail:<dovetail_new_tag>
sudo docker pull opnfv/functest:<functest_new_tag>
sudo docker pull opnfv/yardstick:<yardstick_new_tag>
sudo docker pull opnfv/bottlenecks:<bottlenecks_new_tag>

This step is necessary if dovetail software or the OVP test suite have updates.

9.2. Dovetail Command Line Interface Reference

Dovetail command line is to have a simple command line interface in Dovetail to
make easier for users to handle the functions that dovetail framework provides.

9.2.1. Commands List

	Commands

	Action

	dovetail –help | -h

	Show usage of command “dovetail”

	dovetail –version

	Show version number

	Dovetail List Commands

	dovetail list –help | -h

	Show usage of command “dovetail list”

	dovetail list

	List all available test suites and all test cases within each test suite

	dovetail list <test_suite_name>

	List all available test areas within test suite <test_suite_name>

	Dovetail Show Commands

	dovetail show –help | -h

	Show usage of command “dovetail show”

	dovetail show <test_case_name>

	Show the details of one test case

	Dovetail Run Commands

	dovetail run –help | -h

	Show usage of command “dovetail run”

	dovetail run

	Run Dovetail with all test cases within default test suite

	dovetail run –testsuite <test_suite_name>

	Run Dovetail with all test cases within test suite <test_suite_name>

	dovetail run –testsuite <test_suite_name> –testarea <test_area_name>

	Run Dovetail with test area <test_area_name> within test suite <test_suite_name>.
Test area can be chosen from (vping, tempest, security, ha, stress, bgpvpn, vnf, snaps).
Repeat option to set multiple test areas.

	dovetail run –testcase <test_case_name>

	Run Dovetail with one or more specified test cases.
Repeat option to set multiple test cases.

	dovetail run –mandatory –testsuite <test_suite_name>

	Run Dovetail with all mandatory test cases within test suite <test_suite_name>

	dovetail run –optional –testsuite <test_suite_name>

	Run Dovetail with all optional test cases within test suite <test_suite_name>

	dovetail run –debug | -d

	Run Dovetail with debug mode and show all debug logs

	dovetail run –offline

	Run Dovetail offline, use local docker images instead of download online

	dovetail run –report | -r <db_url>

	Package the results directory which can be used to upload to OVP web portal

	dovetail run –deploy-scenario <deploy_scenario_name>

	Specify the deploy scenario having as project name ‘ovs’

	dovetail run –no-api-validation

	Disable strict API response validation

	dovetail run –no-clean | -n

	Keep all Containers created for debuging

	dovetail run –stop | -s

	Stop immediately when one test case failed

9.2.2. Commands Examples

9.2.2.1. Dovetail Commands

root@1f230e719e44:~/dovetail/dovetail# dovetail --help
Usage: dovetail [OPTIONS] COMMAND [ARGS]...

Options:
 --version Show the version and exit.
 -h, --help Show this message and exit.

Commands:
 list list the testsuite details
 run run the testcases
 show show the testcases details

root@1f230e719e44:~/dovetail/dovetail# dovetail --version
dovetail, version 2018.9.0

9.2.2.2. Dovetail List Commands

root@1f230e719e44:~/dovetail/dovetail# dovetail list --help
Usage: dovetail list [OPTIONS] [TESTSUITE]

 list the testsuite details

Options:
 -h, --help Show this message and exit.

root@1f230e719e44:~/dovetail/dovetail# dovetail list ovp.2019.12
- mandatory
 functest.vping.userdata
 functest.vping.ssh
 functest.tempest.osinterop
 functest.tempest.compute
 functest.tempest.identity_v3
 functest.tempest.image
 functest.tempest.network_api
 functest.tempest.volume
 functest.tempest.neutron_trunk_ports
 functest.tempest.ipv6_api
 functest.security.patrole
 yardstick.ha.nova_api
 yardstick.ha.neutron_server
 yardstick.ha.keystone
 yardstick.ha.glance_api
 yardstick.ha.cinder_api
 yardstick.ha.cpu_load
 yardstick.ha.disk_load
 yardstick.ha.haproxy
 yardstick.ha.rabbitmq
 yardstick.ha.database
 bottlenecks.stress.ping
- optional
 functest.tempest.ipv6_scenario
 functest.tempest.multi_node_scheduling
 functest.tempest.network_security
 functest.tempest.vm_lifecycle
 functest.tempest.network_scenario
 functest.tempest.bgpvpn
 functest.security.patrole_vxlan_dependent
 yardstick.ha.neutron_l3_agent
 yardstick.ha.controller_restart
 functest.vnf.vims
 functest.vnf.vepc

9.2.2.3. Dovetail Show Commands

root@1f230e719e44:~/dovetail/dovetail# dovetail show --help
Usage: dovetail show [OPTIONS] TESTCASE

 show the testcases details

Options:
 -h, --help Show this message and exit.

root@1f230e719e44:~/dovetail/dovetail# dovetail show functest.vping.ssh

functest.vping.ssh:
 name: functest.vping.ssh
 objective: testing for vping using ssh
 validate:
 type: functest
 testcase: vping_ssh
 image_name: opnfv/functest-healthcheck
 report:
 source_archive_files:
 - functest.log
 dest_archive_files:
 - vping_logs/functest.vping.ssh.log
 check_results_file:
 - 'functest_results.txt'
 portal_key_file: vping_logs/functest.vping.ssh.log
 sub_testcase_list:

root@1f230e719e44:~/dovetail/dovetail# dovetail show functest.tempest.image

functest.tempest.image:
 name: functest.tempest.image
 objective: tempest smoke test cases about image
 validate:
 type: functest
 testcase: tempest_custom
 pre_condition:
 - 'cp /home/opnfv/userconfig/pre_config/tempest_conf.yaml /usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/tempest/custom_tests/tempest_conf.yaml'
 - 'cp /home/opnfv/userconfig/tempest_custom_testcases.yaml /usr/lib/python2.7/site-packages/xtesting/ci/testcases.yaml'
 - 'cp /home/opnfv/functest/results/tempest_custom.txt /usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/tempest/custom_tests/test_list.txt'
 report:
 source_archive_files:
 - functest.log
 - tempest_custom/rally.log
 - tempest_custom/tempest-report.html
 dest_archive_files:
 - tempest_logs/functest.tempest.image.functest.log
 - tempest_logs/functest.tempest.image.log
 - tempest_logs/functest.tempest.image.html
 check_results_file:
 - 'functest_results.txt'
 portal_key_file: tempest_logs/functest.tempest.image.html
 sub_testcase_list:
 - tempest.api.image.v2.test_images.BasicOperationsImagesTest.test_register_upload_get_image_file[id-139b765e-7f3d-4b3d-8b37-3ca3876ee318,smoke]
 - tempest.api.image.v2.test_versions.VersionsTest.test_list_versions[id-659ea30a-a17c-4317-832c-0f68ed23c31d,smoke]

9.2.2.4. Dovetail Run Commands

root@1f230e719e44:~/dovetail/dovetail# dovetail run --help
Usage: run.py [OPTIONS]

Dovetail compliance test entry!

Options:
--opnfv-ci Only enabled when running with OPNFV CI jobs and pushing results to TestAPI DB
--optional Run all optional test cases.
--mandatory Run all mandatory test cases.
--deploy-scenario TEXT Specify the DEPLOY_SCENARIO which will be used as input by each testcase respectively
-n, --no-clean Keep all Containers created for debuging.
--no-api-validation disable strict API response validation
--offline run in offline method, which means not to update the docker upstream images, functest, yardstick, etc.
-r, --report Create a tarball file to upload to OVP web portal
-s, --stop Flag for stopping on test case failure.
-d, --debug Flag for showing debug log on screen.
--testcase TEXT Compliance testcase. Specify option multiple times to include multiple test cases.
--testarea TEXT Compliance testarea within testsuite. Specify option multiple times to include multiple test areas.
--testsuite TEXT compliance testsuite.
-h, --help Show this message and exit.

root@1f230e719e44:~/dovetail/dovetail# dovetail run --testcase functest.vping.ssh --offline -r --deploy-scenario os-nosdn-ovs-ha
2019-12-06 02:51:52,634 - run - INFO - ==
2019-12-06 02:51:52,634 - run - INFO - Dovetail compliance: ovp.2019.12!
2019-12-06 02:51:52,634 - run - INFO - ==
2019-12-06 02:51:52,634 - run - INFO - Build tag: daily-master-5b58584a-17d3-11ea-878a-0242ac110002
2019-12-06 02:51:52,634 - run - INFO - DEPLOY_SCENARIO : os-nosdn-ovs-ha
2019-12-06 02:51:53,077 - run - INFO - >>[testcase]: functest.vping.ssh
2019-12-06 02:51:53,078 - dovetail.test_runner.DockerRunner - WARNING - There is no hosts file /home/ovp/pre_config/hosts.yaml. This may cause some issues with domain name resolution.
2019-12-06 02:51:54,048 - dovetail.test_runner.DockerRunner - INFO - Get hardware info of all nodes list in file /home/ovp/pre_config/pod.yaml ...
2019-12-06 02:51:54,049 - dovetail.test_runner.DockerRunner - INFO - Hardware info of all nodes are stored in file /home/dovetail/results/all_hosts_info.json.
2019-12-06 02:51:54,073 - dovetail.container.Container - WARNING - There is no hosts file /home/ovp/pre_config/hosts.yaml. This may cause some issues with domain name resolution.
2019-12-06 02:52:57,982 - dovetail.report.Report - INFO - Results have been stored with files: ['/home/ovp/results/functest_results.txt'].
2019-12-06 02:52:57,986 - dovetail.report.Report - INFO -

Dovetail Report
Version: 2019.12
Build Tag: daily-master-5b58584a-17d3-11ea-878a-0242ac110002
Test Date: 2019-12-06 02:52:57 UTC
Duration: 64.91 s

Pass Rate: 100.00% (1/1)
vping: pass rate 100.00%
-functest.vping.ssh PASS

9.3. Running Dovetail by RESTful API

9.3.1. Overview

Dovetail framework provides RESTful APIs for end users to run all OVP test cases.
Also it provides a Swagger UI for users to find out all APIs and try them out.

9.3.2. Definitions and abbreviations

	REST - Representational State Transfer

	API - Application Programming Interface

	OVP - OPNFV Verification Program

	UI - User Interface

9.3.3. Environment Preparation

9.3.3.1. Install Docker

The main prerequisite software for Dovetail is Docker. Please refer to official
Docker installation guide that is relevant to your Test Host’s operating system.

9.3.3.2. Configuring the Test Host Environment

For convenience and as a convention, we will create a home directory for storing
all Dovetail related config items and results files:

$ mkdir -p ${HOME}/dovetail
$ export DOVETAIL_HOME=${HOME}/dovetail

9.3.4. Installing Dovetail API

The Dovetail project maintains a Docker image that has both Dovetail API and
Dovetail CLI preinstalled. This Docker image is tagged with versions.
Before pulling the Dovetail image, check the OPNFV’s OVP web page first to
determine the right tag for OVP testing.

9.3.4.1. Downloading Dovetail Docker Image

The first version of Dovetail API is ovp-3.0.0.

$ sudo docker pull opnfv/dovetail:ovp-3.0.0
ovp-3.0.0: Pulling from opnfv/dovetail
6abc03819f3e: Pull complete
05731e63f211: Pull complete
0bd67c50d6be: Pull complete
3f737f5d00b2: Pull complete
c93fd0792ebd: Pull complete
77d9a9603ec6: Pull complete
9463cdd9c628: Pull complete
Digest: sha256:45e2ffdbe217a4e6723536afb5b6a3785d318deff535da275f34cf8393af458d
Status: Downloaded newer image for opnfv/dovetail:ovp-3.0.0

9.3.4.2. Deploying Dovetail API

The Dovetail API can be deployed by running a Dovetail container with the Docker
image downloaded before.

$ docker run -itd -p <swagger_port>:80 -p <api_port>:5000 --privileged=true \
 -e SWAGGER_HOST=<host_ip>:<api_port> -e DOVETAIL_HOME=/home/ovp \
 -v /home/ovp:/home/ovp -v /var/run/docker.sock:/var/run/docker.sock \
 opnfv/dovetail:<version>

In the container, it uses 2 ports for Swagger UI (port 80) and API (port 5000)
respectively. So in order to access to these 2 services outside the container,
it needs to map them to the host ports. It can be any available ports in the host.

The env SWAGGER_HOST is optional. If you will access the Swagger UI webpage with
the same host deploying this container, there is no need to set SWAGGER_HOST.
Otherwise, if you will access the Swagger UI webpage from other machines, then
it needs to set SWAGGER_HOST.

9.3.5. Using Dovetail API

Here give the guide of where to find out all APIs and how to use them.

9.3.5.1. Swagger UI Webpage

After deploying Dovetail container, the Swagger UI webpage can be accessed with
any browser. The url is http://localhost:<swagger_port>/dovetail-api/index.html
if accessing from the same host as deploying this container. Otherwise, the url
is http://<host_ip>:<swagger_port>/dovetail-api/index.html.

9.3.5.2. Calling APIs

There are totally 5 APIs provided by Dovetail.

	Get all test suites

	Get all test cases

	Run test cases

	Run test cases with execution ID

	Get status of test cases

Here give some easy guide of how to call these APIs. For more detailed infomation,
please refer to the Swagger UI page.

9.3.5.2.1. Getting All Test Suites

	This is a GET function with no parameter to get all test suites defined
in Dovetail container.

	The request URL is http://<host_ip>:<api_port>/api/v1/scenario/nfvi/testsuites.

	The response body is structured as:

{
 "testsuites": {
 "debug": {
 "name": "debug",
 "testcases_list": {
 "optional": [
 "functest.vping.userdata"
]
 }
 },
 "healthcheck": {
 "name": "healthcheck",
 "testcases_list": {
 "optional": [
 "functest.healthcheck.connection_check"
]
 }
 }
 }
}

9.3.5.2.2. Getting All Test Cases

	This is a GET function without no parameter to get all test cases integrated
in Dovetail container.

	The request URL is http://<host_ip>:<api_port>/api/v1/scenario/nfvi/testcases.

	The response body is structured as:

{
 "testcases": [
 {
 "description": "This test case will verify the high availability of the user service provided by OpenStack (keystone) on control node.",
 "scenario": "nfvi",
 "subTestCase": null,
 "testCaseName": "yardstick.ha.keystone"
 },
 {
 "description": "testing for vping using userdata",
 "scenario": "nfvi",
 "subTestCase": null,
 "testCaseName": "functest.vping.userdata"
 },
 {
 "description": "tempest smoke test cases about volume",
 "scenario": "nfvi",
 "subTestCase": [
 "tempest.api.volume.test_volumes_actions.VolumesActionsTest.test_attach_detach_volume_to_instance[compute,id-fff42874-7db5-4487-a8e1-ddda5fb5288d,smoke]",
 "tempest.scenario.test_volume_boot_pattern.TestVolumeBootPattern.test_volume_boot_pattern[compute,id-557cd2c2-4eb8-4dce-98be-f86765ff311b,image,slow,volume]"
],
 "testCaseName": "functest.tempest.volume"
 }
]
}

9.3.5.2.3. Running Test Cases

	This is a POST function with some parameters to run a subset of the whole test cases.

	The request URL is http://<host_ip>:<api_port>/api/v1/scenario/nfvi/execution.

	The request body is structured as following. The conf section is used to
give all configuration items those are required to run test cases. They are
the same as all configuration files provided under $DOVETAIL_HOME/pre_config/.
If you already have these files under this directory, the whole conf section
can be ignored. If you provide these configuration items with the request body,
then the corresponding files under $DOVETAIL_HOME/pre_config/ will be ignored
by Dovetail. The testcase, testsuite, testarea and deploy_scenario
correspond to --testcase, --testsuite, --testarea and --deploy-scenario
defined with Dovetail CLI. The options section support to set all options
which have already been implemented by Dovetail CLI including --optional,
--mandatory, --no-clean, --no-api-validation, --offline,
--report, --stop and --debug. For options list in options section,
they are set to be True, otherwise, they are set to be False.

{
 "conf": {
 "vm_images": "/home/ovp/images",
 "pods": {
 "nodes": [
 {
 "name": "node1",
 "role": "Controller",
 "ip": "192.168.117.222",
 "user": "root",
 "password": "root",
 }
],
 "process_info": [
 {
 "testcase_name": "yardstick.ha.rabbitmq",
 "attack_host": "node1",
 "attack_process": "rabbitmq"
 }
]
 },
 "tempest_conf": {
 "compute": {
 "min_compute_nodes": "2",
 "volume_device_name": "vdb",
 "max_microversion": "2.65"
 }
 },
 "hosts": {
 "192.168.141.101": [
 "volume.os.com",
 "compute.os.com"
]
 },
 "envs": {
 "OS_USERNAME": "admin",
 "OS_PASSWORD": "admin",
 "OS_AUTH_URL": "https://192.168.117.222:5000/v3",
 "EXTERNAL_NETWORK": "ext-net"
 }
 },
 "testcase": [
 "functest.vping.ssh",
 "yardstick.ha.rabbitmq"
],
 "testsuite": "ovp.2019.12",
 "testarea": [
 "vping",
 "ha"
],
 "deploy_scenario": "os-nosdn-ovs-ha",
 "options": [
 "debug",
 "report"
]
}

	The response body is structured as:

{
 "result": [
 {
 "endTime": null,
 "executionId": "a65e24c0-1803-11ea-84f4-0242ac110004",
 "results": null,
 "scenario": "nfvi",
 "status": "IN_PROGRESS",
 "testCaseName": "functest.vping.ssh",
 "testSuiteName": "ovp.2019.12",
 "timestart": null
 }
]
}

9.3.5.2.4. Running Test Cases with Execution ID

	This is a POST function with some parameters to run a subset of
whole test cases and set the execution ID instead of using the random one.

	The request URL is http://<host_ip>:<api_port>/api/v1/scenario/nfvi/execution/{exec_id}.

	It’s almost the same as the above running test cases API except the execution ID.

9.3.5.2.5. Getting Status of Test Cases

	This is a POST function to get the status of some test cases by using
the execution ID received in the response body of Running Test Cases or
Running Test Cases with Execution ID APIs.

	The request URL is http://<host_ip>:<api_port>/api/v1/scenario/nfvi/execution/status/{exec_id}.

	The request body is structured as:

{
 "testcase": [
 "functest.vping.ssh"
]
}

	The response body is structured as:

{
 "result": [
 {
 "endTime": "2019-12-06 08:39:23",
 "executionId": "a65e24c0-1803-11ea-84f4-0242ac110004",
 "results": {
 "criteria": "PASS",
 "sub_testcase": [],
 "timestart": "2019-12-06 08:38:40",
 "timestop":"2019-12-06 08:39:23"
 },
 "scenario": "nfvi",
 "status": "COMPLETED",
 "testCaseName": "functest.vping.ssh",
 "testSuiteName": "ovp.2019.12",
 "timestart":"2019-12-06 08:38:40"
 }
]
}

9.3.5.3. Getting Test Results

Each time you call the running test case API, Dovetail creates a directory with the
execution ID as the name under $DOVETAIL_HOME to store results on the host.
You can find all result files under $DOVETAIL_HOME/<executionId>/results.
If you run test cases with report option, then there will be a tarball file
under $DOVETAIL_HOME/<executionId> which can be upload to OVP portal.

9.4. Conducting ONAP VNF Testing for OVP

9.4.1. Overview

As the LFN verification framework, the Dovetail team has worked with the ONAP VVP, and VTP
projects to enable VNF testing, results submission, and results review to be completed
throught the same web portal and processes used for the NFVI testing.
For more details about VNF SDK and VVP, please refer to ONAP VNF SDK Compliance Verification Program [https://docs.onap.org/en/elalto/submodules/vnfsdk/model.git/docs/files/VNFSDK-LFN-CVC.html]
and ONAP VVP [https://docs.onap.org/en/elalto/submodules/vvp/documentation.git/docs/index.html].

Testing is available for both HEAT and TOSCA defined VNFs, but the process is different depending
on the template language. This userguide covers the testing process for both VNF types in the
two sections below.

9.4.2. Definitions and abbreviations

	LFN - Linux Foundation Networking

	ONAP - Open Network Automation Platform

	OVP - OPNFV Verification Program

	VNF - Virtual Network Function

	VNF SDK - VNF Software Development Kit

	VTP - VNF Test Platform

	VVP - VNF Validation Program

9.4.3. Testing of HEAT based VNFs

9.4.3.1. Environment Preparation

9.4.3.1.1. Prerequisites

	ONAP ElAlto Release deployed via OOM [https://onap.readthedocs.io/en/latest/submodules/oom.git/docs/oom_quickstart_guide.html]

	An OpenStack deployment is available and privisioned as ONAP’s Cloud Site

	kubectl is installed on the system used to start the testing

	bash

	VNF Heat Templates

	Preload json files

After deploying ONAP, you need to configure ONAP with:

	A cloud owner

	A cloud region

	A subscriber

	A service type

	A project name

	An owning entity

	A platform

	A line of business

	A cloud site

If you’re not familiar with how to configure ONAP, there are guides that use
robot [https://onap.readthedocs.io/en/elalto/submodules/integration.git/docs/docs_robot.html]
or direct api [https://wiki.onap.org/pages/viewpage.action?pageId=25431491] requests available
to help, as well as a guide for adding a new OpenStack site to ONAP.

9.4.3.1.2. VVP Test Tool Setup

On your local machine, or the system from which you will run the tests, you will need to clone the
ONAP OOM project repo:

git clone --branch 5.0.1-ONAP ssh://<username>@gerrit.onap.org:29418/oom --recurse-submodules

9.4.3.2. VNF Preparation

The vnf lifecycle validation testsuite requires the VNF to be packaged into a specific directory
hierarchy, shown below.

vnf_folder
├── /templates
| └── base.yaml
| └── base.env
| └── incremental_0.yaml
| └── incremental_0.env
| └── ...
├── /preloads
| └── base_preload.json
| └── incremental_0_preload.json
| └── ...
└── vnf-details.json

	The name for vnf_folder is free-form, and can be located anywhere on your computer. The path to this folder will be passed to the testsuite as an argument.

	/templates should contain your VVP-compliant VNF heat templates.

	
	/preloads should contain a preload file for each VNF module (TODO: add link to preload documentation).
	
	For a VNF-API preload: vnf-name, vnf-type, generic-vnf-type, and generic-vnf-name should be empty strings.

	For a GR-API preload: vnf-name, vnf-type, vf-module-type, and vf-module-name should be empty strings.

	This information will be populated at runtime by the testsuite.

	vnf-details should be a json file with the information that will be used by ONAP to instantiate the VNF. The structure of vnf-details is shown below.

	VNF disk image must be uploaded and available in the OpenStack project being managed by ONAP

	Modules must contain an entry for each module of the VNF. Only one module can be a base module.

	api_type should match the format of the preloads that are provided in the package.

	The other information should match what was used to configure ONAP during the pre-requisite section of this guide.

{
 "vnf_name": "The Vnf Name",
 "description": "Description of the VNF",
 "modules": [
 {
 "filename": "base.yaml",
 "isBase": "true",
 "preload": "base_preload.json"
 },
 {
 "filename": "incremental_0.yaml",
 "isBase": "false",
 "preload": "incremental_0.json"
 },
 ...
],
 "api_type": "[gr_api] or [vnf_api]",
 "subscriber": "<subscriber name>",
 "service_type": "<service type>",
 "tenant_name": "<name of tenant>",
 "region_id": "<name of region>",
 "cloud_owner": "<name of cloud owner>",
 "project_name": "<name of project>",
 "owning_entity": "<name of owning entity>",
 "platform": "<name of platform>",
 "line_of_business": "<name of line of business>",
 "os_password": "<openstack password>"
}

9.4.3.3. Runnign the HEAT VNF Test

The ONAP OOM Robot framework will run the test, using kubectl to manage the execution. The framework
will copy your VNF template files to the robot container required to execute the test.

 cd oom/kubernetes/robot
$./instantiate-k8s.sh --help
./instantiate-k8s.sh [options]

required:
-n, --namespace <namespace> namespace that robot pod is running under.
-f, --folder <folder> path to folder containing heat templates, preloads, and vnf-details.json.

additional options:
-p, --poll some cloud environments (like azure) have a short time out value when executing
 kubectl. If your shell exits before the testsuite finishes, using this option
 will poll the testsuite logs every 30 seconds until the test finishes.
-t, --tag <tag> robot testcase tag to execute (default is instantiate_vnf).

This script executes the VNF instantiation robot testsuite.
- It copies the VNF folder to the robot container that is part of the ONAP deployment.
- It models, distributes, and instantiates a heat-based VNF.
- It copies the logs to an output directory, and creates a tarball for upload to the OVP portal.

Sample execution:

$./instantiate-k8s.sh --namespace onap --folder /tmp/vnf-instantiation/examples/VNF_API/pass/multi_module/ --poll
...
...
...
...
--
Testsuites.Vnf Instantiation :: The main driver for instantiating ... | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
==
Testsuites | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
==
Output: /share/logs/0003_ete_instantiate_vnf/output.xml
+ set +x
testsuite has finished
Copying Results from pod...
/tmp/vnf-instantiation /tmp/vnf-instantiation
a log.html
a results.json
a stack_report.json
a validation-scripts.json
/tmp/vnf-instantiation
VNF test results: /tmp/vnfdata.46749/vnf_heat_results.tar.gz

The testsuite takes about 10-15 minutes for a simple VNF, and will take longer for a more complicated VNF.

9.4.3.3.1. Reporting Results

Once the testsuite is finished, it will create a directory and tarball in /tmp (the name of the directory
and file is shown at the end of the stdout of the script). There will be a results.json in that directory
that has the ultimate outcome of the test, in the structure shown below.

Log Files

The output tar file will have 4 log files in it.

	results.json: This is high-level results file of all of the test steps, and is consumed by the OVP portal.

	report.json: This is the output of the vvp validation scripts.

	stack_report.json: This is the output from querying openstack to validate the heat modules.

	log.html: This is the robot log, and contains each execution step of the testcase.

If the result is “PASS”, that means the testsuite was successful and the tarball is ready for submission
to the OVP portal.

results.json

{
 "vnf_checksum": "afc57604a3b3b7401d5b8648328807b594d7711355a2315095ac57db4c334a50",
 "build_tag": "vnf-validation-53270",
 "version": "2019.09",
 "test_date": "2019-09-04 17:50:10.575",
 "duration": 437.002,
 "vnf_type": "heat",
 "testcases_list": [
 {
 "mandatory": "true",
 "name": "onap-vvp.validate.heat",
 "result": "PASS",
 "objective": "onap heat template validation",
 "sub_testcase": [],
 "portal_key_file": "report.json"
 },
 {
 "mandatory": "true",
 "name": "onap-vvp.lifecycle_validate.heat",
 "result": "PASS",
 "objective": "onap vnf lifecycle validation",
 "sub_testcase": [
 {
 "name": "model-and-distribute",
 "result": "PASS"
 },
 {
 "name": "instantiation",
 "result": "PASS"
 }
],
 "portal_key_file": "log.html"
 },
 {
 "mandatory": "true",
 "name": "stack_validation",
 "result": "PASS",
 "objective": "onap vnf openstack validation",
 "sub_testcase": [],
 "portal_key_file": "stack_report.json"
 }
]
}

9.4.3.4. Additional Resources

	ONAP VVP Project [https://wiki.onap.org/display/DW/VNF+Validation+Program+Project]

	VVP Wiki Users Guide (this will track current ONAP master) [https://wiki.onap.org/pages/viewpage.action?pageId=68546123]

Sample VNF templates are available on the VVP Wiki Users Guide page.

9.4.4. Testing of TOSCA based VNFs

VNF Test Platform (VTP) provides an platform to on-board different test cases required for
OVP for various VNF testing provided by VNFSDK (for TOSCA) and VVP(for HEAT) projects in
ONAP. And it generates the test case outputs which would be uploaded into OVP portal for
VNF badging.

9.4.4.1. TOSCA VNF Test Environment

As pre-requestiests steps, Its assumed that, successful ONAP, Vendor VNFM and OpenStack
cloud are already available. Below installation steps help to setup VTP components and CLI.

[image: ../../../_images/tocsa_vnf_test_environment.png]

9.4.4.2. Installation

Clone the VNFSDK repo.

git clone --branch elalto https://git.onap.org/vnfsdk/refrepo

Install the VTP by using script refrepo/vnfmarket-be/deployment/install/vtp_install.sh

Follow the steps as below (in sequence):

	vtp_install.sh –download : It will download all required artifacts into /opt/vtp_stage

	vtp_install.sh –install : It will install VTP (/opt/controller) and CLI (/opt/oclip)

	vtp_install.sh –start : It will start VTP controller as tomcat service and CLI as oclip service

	vtp_install.sh –verify : It will verify the setup is done properly by running some test cases.

Last step (verify) would check the health of VTP components and TOSCA VNF compliance and validation test cases.

9.4.4.2.1. Check Available Test Cases

VTP supports to check the compliance of VNF and PNF based on ONAP VNFREQS.

To check:

	Go to command console

	Run command oclip

	Now it will provide a command prompt:

oclip:open-cli>

Now run command as below and check the supported compliance testcases for VNFREQS.

	csar-validate - Helps to validate given VNF CSAR for all configured VNFREQS.

	csar-validate-rxxx - Helps to validate given VNF CSAR for a given VNFREQS xxx.

oclip:open-cli>schema-list --product onap-dublin --service vnf-compliance
+--------------+----------------+------------------------+--------------+----------+------+
|product |service |command |ocs-version |enabled |rpc |
+--------------+----------------+------------------------+--------------+----------+------+
|onap-dublin |vnf-compliance |csar-validate-r10087 |1.0 |true | |
+--------------+----------------+------------------------+--------------+----------+------+
|onap-dublin |vnf-compliance |csar-validate |1.0 |true | |
+--------------+----------------+------------------------+--------------+----------+------+
|onap-dublin |vnf-compliance |csar-validate-r26885 |1.0 |true | |
+--------------+----------------+------------------------+--------------+----------+------+
|onap-dublin |vnf-compliance |csar-validate-r54356 |1.0 |true | |
...

To know the details of each VNFREQS, run as below.

oclip:open-cli>use onap-dublin
oclip:onap-dublin>csar-validate-r54356 --help
usage: oclip csar-validate-r54356

Data types used by NFV node and is based on TOSCA/YAML constructs specified in draft GS NFV-SOL 001.
The node data definitions/attributes used in VNFD MUST comply.

Now run command as below and check the supported validation testcases

oclip:onap-dublin>use open-cli
oclip:open-cli>schema-list --product onap-dublin --service vnf-validation
+--------------+----------------+----------------------+--------------+----------+------+
|product |service |command |ocs-version |enabled |rpc |
+--------------+----------------+----------------------+--------------+----------+------+
|onap-dublin |vnf-validation |vnf-tosca-provision |1.0 |true | |
+--------------+----------------+----------------------+--------------+----------+------+

9.4.4.2.2. Configure ONAP with required VNFM and cloud details

1. Setup the OCOMP profile onap-dublin

Run following command to configure the ONAP service URL and creadentials as given below, which will be
used by VTP while executing the test cases

oclip:open-cli>use onap-dublin
oclip:onap-dublin>profile onap-dublin
oclip:onap-dublin>set sdc.onboarding:host-url=http://159.138.8.8:30280
oclip:onap-dublin>set sdc.onboarding:host-username=cs0008
oclip:onap-dublin>set sdc.onboarding:host-password=demo123456!
oclip:onap-dublin>set sdc.catalog:host-url=http://159.138.8.8:30205
oclip:onap-dublin>set sdc.catalog:host-password=demo123456\!
oclip:onap-dublin>set sdc.catalog:host-username=cs0008
oclip:onap-dublin>set sdc.catalog:service-model-approve:host-username=gv0001
oclip:onap-dublin>set sdc.catalog:service-model-distribute:host-username=op0001
oclip:onap-dublin>set sdc.catalog:service-model-test-start:host-username=jm0007
oclip:onap-dublin>set sdc.catalog:service-model-test-accept:host-username=jm0007
oclip:onap-dublin>set sdc.catalog:service-model-add-artifact:host-username=ocomp
oclip:onap-dublin>set sdc.catalog:vf-model-add-artifact:host-username=ocomp
oclip:onap-dublin>set aai:host-url=https://159.138.8.8:30233
oclip:onap-dublin>set aai:host-username=AAI
oclip:onap-dublin>set aai:host-password=AAI
oclip:onap-dublin>set vfc:host-url=http://159.138.8.8:30280
oclip:onap-dublin>set multicloud:host-url=http://159.138.8.8:30280

NOTE: Mostly all above entries value would be same execept the IP address used in the
URL, which would be ONAP k8s cluser IP.

By default, SDC onboarding service does not provide node port, which is available to
access from external ONAP network. so to enable for external access, register the SDC
onboarding service into MSB and use MSB url for sdc.onboarding:host-url.

oclip:onap-dublin> microservice-create --service-name sdcob --service-version v1.0 --service-url /onboarding-api/v1.0 --path /onboarding-api/v1.0 --node-ip 172.16.1.0 --node-port 8081

NOTE: To find the node-ip and node-port, use the following steps.

Find out SDC onboarding service IP and port details as given here:

[root@onap-dublin-vfw-93996-50c1z ~]# kubectl get pods -n onap -o wide | grep sdc-onboarding-be
dev-sdc-sdc-onboarding-be-5564b877c8-vpwr5 2/2 Running 0 29d 172.16.1.0 192.168.2.163 <none> <none>
dev-sdc-sdc-onboarding-be-cassandra-init-mtvz6 0/1 Completed 0 29d 172.16.0.220 192.168.2.163 <none> <none>
[root@onap-dublin-vfw-93996-50c1z ~]#

Note down the IP address for sdc-onboarding-be 172.16.1.0

[root@onap-dublin-vfw-93996-50c1z ~]# kubectl get services -n onap -o wide | grep sdc-onboarding-be
sdc-onboarding-be ClusterIP 10.247.198.92 <none> 8445/TCP,8081/TCP 29d app=sdc-onboarding-be,release=dev-sdc
[root@onap-dublin-vfw-93996-50c1z ~]#

Note down the port for sdc-onboarding-be 8445 8081

Similarly, other service IP and Port could be discovered like above, in case not know earlier :)

Verify these details once by typing ‘set’

oclip:onap-dublin> set

This profile would be used by user while running the test cases with ONAP setup configured in it, as below
oclip –profile onap-dublin vnf-tosca-provision ….

2. Setup SDC consumer

SDC uses consumer concept to configure required VN model and service model artifacts. So
following commands required to run, which will create consumer named ocomp, which is
already configured in onap-dublin profile created in above steps.

oclip --product onap-dublin --profile onap-dublin sdc-consumer-create --consumer-name ocomp

NOTE: command oclip could be used in scripting mode as above or in interactive mode as used
in earlier steps

3. Update the cloud and vnfm driver details

In the configuration file /opt/oclip/conf/vnf-tosca-provision.json, update the cloud
and VNFM details.

"cloud": {
 "identity-url": "http://10.12.11.1:5000/v3",
 "username": "admin",
 "password": "password",
 "region": "RegionOVP",
 "version": "ocata",
 "tenant": "ocomp"
 },
 "vnfm":{
 "hwvnfmdriver":{
 "version": "v1.0",
 "url": "http://159.138.8.8:38088",
 "username": "admin",
 "password": "xxxx"
 },
 "gvnfmdriver":{
 "version": "v1.0",
 "url": "http://159.138.8.8:30280"
 }
 }

4.Configure the decided VNFRES (optional)
VTP allows to configure the set of VNFREQS to be considered while running the VNF
compliance test cases in the configuration file /opt/oclip/conf/vnfreqs.properties.

If not available, please create this file with following entries:

vnfreqs.enabled=r02454,r04298,r07879,r09467,r13390,r23823,r26881,r27310,r35851,r40293,r43958,r66070,r77707,r77786,r87234,r10087,r21322,r26885,r40820,r35854,r65486,r17852,r46527,r15837,r54356,r67895,r95321,r32155,r01123,r51347,r787965,r130206
pnfreqs.enabled=r10087,r87234,r35854,r15837,r17852,r293901,r146092,r57019,r787965,r130206
ignored all chef and ansible related tests
vnferrors.ignored=
pnferrors.ignored=

9.4.4.3. Runnign the TOSCA VNF Test

Every test provided in VTP is given with guidelines on how to use it. On every execution of test cases, use the following additional arguments based on requirements

	–product onap-dublin - It helps VTP choose the test cases written for onap-dublin version

	–profile onap-dublin - It helps VTP to use the profile settings provided by admin (optional)

	–request-id - It helps VTP to track the progress of the test cases execution and user could use this id for same. (optional)

So, final test case execution would be as below. To find the test case arguments details, run second command below.

oclip --product onap-dublin --profile onap-dublin --request-id req-1 <test case name> <test case arguments>
oclip --product onap-dublin <test case name> --help

9.4.4.3.1. Running TOSCA VNF Compliance Testing

To run compliance test as below with given CSAR file

It will produce the result format as below:

{
 "date": "Fri Sep 20 17:34:24 CST 2019",
 "criteria": "PASS",
 "contact": "ONAP VTP Team onap-discuss@lists.onap.org",
 "results": [
 {
 "description": "V2.4.1 (2018-02)",
 "passed": true,
 "vnfreqName": "SOL004",
 "errors": []
 },
 {
 "description": "If the VNF or PNF CSAR Package utilizes Option 2 for package security, then the complete CSAR file MUST be digitally signed with the VNF or PNF provider private key. The VNF or PNF provider delivers one zip file consisting of the CSAR file, a signature file and a certificate file that includes the VNF or PNF provider public key. The certificate may also be included in the signature container, if the signature format allows that. The VNF or PNF provider creates a zip file consisting of the CSAR file with .csar extension, signature and certificate files. The signature and certificate files must be siblings of the CSAR file with extensions .cms and .cert respectively.\n",
 "passed": true,
 "vnfreqName": "r787965",
 "errors": []
 }
],
 "platform": "VNFSDK - VNF Test Platform (VTP) 1.0",
 "vnf": {
 "mode": "WITH_TOSCA_META_DIR",
 "vendor": "ONAP",
 "name": null,
 "type": "TOSCA",
 "version": null
 }
}

In case of errors, the errors section will have list of details as below. Each error block, will be
given with error code and error details. Error code would be very useful to provide the troubleshooting
guide in future. Note, to generate the test result in OVP archieve format, its recommended to run this compliance
test with request-id similar to running validation test as below.

[
{
 "vnfreqNo": "R66070",
 "code": "0x1000",
 "message": "MissinEntry-Definitions file",
 "lineNumber": -1
}
]

9.4.4.3.2. Running TOSCA VNF Validation Testing

VTP provides validation test case with following modes:

[image: ../../../_images/tosca_vnf_test_flow.png]
setup: Create requires Vendor, Service Subscription and VNF cloud in ONAP
standup: From the given VSP csar, VNF csar and NS csar, it creates VF Model, NS Model and NS service
cleanup: Remove those entries created during provision
provision: Runs setup -> standup
validate: Runs setup -> standup -> cleanup
checkup: mode helps to verify automation is deployed properly.

For OVP badging, validate mode would be used as below:

oclip --request-id WkVVu9fD--product onap-dublin --profile onap-dublin vnf-tosca-provision --vsp <vsp csar> --vnf-csar <v

Validation testing would take for a while to complete the test execution, so user could use the above
given request-id, to tracking the progress as below:

oclip execution-list --request-id WkVVu9fD
+------------+------------------------+--------------+------------------+------------------------------+--------------+------------+--------------------------+--------------------------+
|request-id |execution-id |product |service |command |profile |status |start-time |end-time |
+------------+------------------------+--------------+------------------+------------------------------+--------------+------------+--------------------------+--------------------------+
|WkVVu9fD |WkVVu9fD-1568731678753 |onap-dublin |vnf-validation |vnf-tosca-provision | |in-progress |2019-09-17T14:47:58.000 | |
+------------+------------------------+--------------+------------------+------------------------------+--------------+------------+--------------------------+--------------------------+
|WkVVu9fD |WkVVu9fD-1568731876397 |onap-dublin |sdc.catalog |service-model-test-request |onap-dublin |in-progress |2019-09-17T14:51:16.000 | |
+------------+------------------------+--------------+------------------+------------------------------+--------------+------------+--------------------------+--------------------------+
|WkVVu9fD |WkVVu9fD-1568731966966 |onap-dublin |sdc.onboarding |vsp-archive |onap-dublin |completed |2019-09-17T14:52:46.000 |2019-09-17T14:52:47.000 |
+------------+------------------------+--------------+------------------+------------------------------+--------------+------------+--------------------------+--------------------------+
|WkVVu9fD |WkVVu9fD-1568731976982 |onap-dublin |aai |subscription-delete |onap-dublin |completed |2019-09-17T14:52:56.000 |2019-09-17T14:52:57.000 |
+------------+------------------------+--------------+------------------+------------------------------+--------------+------------+--------------------------+--------------------------+
|WkVVu9fD |WkVVu9fD-1568731785780 |onap-dublin |aai |vnfm-create |onap-dublin |completed |2019-09-17T14:49:45.000 |2019-09-17T14:49:46.000 |
......

While executing the test cases, VTP provides unique execution-id (2nd column) for each step. As you note
in the example above, some steps are in-progress, while others are completed already. If there is error
then status will be set to failed.

To find out the foot-print of each step, following commands are available

oclip execution-show-out --execution-id WkVVu9fD-1568731785780 - Reports the standard output logs
oclip execution-show-err --execution-id WkVVu9fD-1568731785780 - Reports the standard error logs
oclip execution-show-debug --execution-id WkVVu9fD-1568731785780 - Reports the debug details like HTTP request and responseoclip execution-show --execution-id WkVVu9fD-1568731785780 - Reports the complete foot-print of inputs, outputs of steps

Track the progress of the vnf-tosca-provision test cases until its completed. Then the out of the validation
test cases could be retrieved as below:

oclip execution-show --execution-id WkVVu9fD-1568731678753 - use vnf tosca test case execution id here

It will provides the output format as below:

{
"output": {
 "ns-id": null,
 "vnf-id": "",
 "vnfm-driver": "hwvnfmdriver",
 "vnf-vendor-name": "huawei",
 "onap-objects": {
 "ns_instance_id": null,
 "tenant_version": null,
 "service_type_id": null,
 "tenant_id": null,
 "subscription_version": null,
 "esr_vnfm_id": null,
 "location_id": null,
 "ns_version": null,
 "vnf_status": "active",
 "entitlement_id": null,
 "ns_id": null,
 "cloud_version": null,
 "cloud_id": null,
 "vlm_version": null,
 "esr_vnfm_version": null,
 "vlm_id": null,
 "vsp_id": null,
 "vf_id": null,
 "ns_instance_status": "active",
 "service_type_version": null,
 "ns_uuid": null,
 "location_version": null,
 "feature_group_id": null,
 "vf_version": null,
 "vsp_version": null,
 "agreement_id": null,
 "vf_uuid": null,
 "ns_vf_resource_id": null,
 "vsp_version_id": null,
 "customer_version": null,
 "vf_inputs": null,
 "customer_id": null,
 "key_group_id": null,
 },
 "vnf-status": "active",
 "vnf-name": "vgw",
 "ns-status": "active"
},
"input": {
 "mode": "validate",
 "vsp": "/tmp/data/vtp-tmp-files/1568731645518.csar",
 "vnfm-driver": "hwvnfmdriver",
 "config-json": "/opt/oclip/conf/vnf-tosca-provision.json",
 "vnf-vendor-name": "huawei",
 "ns-csar": "/tmp/data/vtp-tmp-files/1568731660745.csar",
 "onap-objects": "{}",
 "timeout": "600000",
 "vnf-name": "vgw",
 "vnf-csar": "/tmp/data/vtp-tmp-files/1568731655310.csar"
},
"product": "onap-dublin",
"start-time": "2019-09-17T14:47:58.000",
"service": "vnf-validation",
"end-time": "2019-09-17T14:53:46.000",
"request-id": "WkVVu9fD-1568731678753",
"command": "vnf-tosca-provision",
"status": "completed"
}

9.4.4.3.3. Reporting Results

VTP provides translation tool to migrate the VTP result into OVP portal format and generates the tar file
for the given test case execution. Please refer https://github.com/onap/vnfsdk-refrepo/tree/master/vnfmarket-be/deployment/vtp2ovp for more details.

Once tar is generated, it can be used to submit into OVP portal https://vnf-verified.lfnetworking.org/

10. OVP Test Case Requirements

10.1. OVP Test Suite Purpose and Goals

The OVP test suite is intended to provide a method for validating the
interfaces and behaviors of an NFVI platform according to the expected
capabilities exposed in OPNFV. The behavioral foundation evaluated in these
tests should serve to provide a functional baseline for VNF deployment and
portability across NFVI instances. All OVP tests are available in open source
and are executed in open source test frameworks.

10.2. Test Case Requirements

The following requirements are mandatory for a test to be submitted for
consideration in the OVP test suite:

	All test cases must be fully documented, in a common format. Please consider
the existing OVP Test Specifications as examples.

	Clearly identifying the test procedure and expected results / metrics to
determine a “pass” or “fail” result.

	Tests must be validated for the purpose of OVP, tests should be run with both
an expected positive and negative outcome.

	At the current stage of OVP, only functional tests are eligible, performance
testing is out of scope.

	Performance test output could be built in as “for information only”, but
must not carry pass/fail metrics.

	Test cases should favor implementation of a published standard interface for
validation.

	Where no standard is available provide API support references.

	If a standard exists and is not followed, an exemption is required. Such
exemptions can be raised in the project meetings first, and if no consensus
can be reached, escalated to the TSC.

	Test cases must pass on applicable OPNFV reference deployments and release
versions.

	Tests must not require a specific NFVI platform composition or installation
tool.

	Tests and test tools must run independently of the method of platform
installation and architecture.

	Tests and test tools must run independently of specific OPNFV components
allowing different components such as storage backends or SDN
controllers.

	Tests must not require un-merged patches to the relevant upstream projects.

	Tests must not require features or code which are out of scope for the
latest release of the OPNFV project.

	Tests must have a documented history of recent successful verification in
OPNFV testing programs including CI, Functest, Yardstick, Bottlenecks,
Dovetail, etc. (i.e., all testing programs in OPNFV that regularly validate
tests against the release, whether automated or manual).

	Tests must be considered optional unless they have a documented history for
ALL OPNFV scenarios that are both

	applicable, i.e., support the feature that the test exercises, and

	released, i.e., in the OPNFV release supported by the OVP test suite
version.

	Tests must run against a fully deployed and operational system under test.

	Tests and test implementations must support stand alone OPNFV and commercial
OPNFV-derived solutions.

	There can be no dependency on OPNFV resources or infrastructure.

	Tests must not require external resources while a test is running, e.g.,
connectivity to the Internet. All resources required to run a test, e.g.,
VM and container images, are downloaded and installed as part of the system
preparation and test tool installation.

	The following things must be documented for the test case:

	Use case specification

	Test preconditions

	Basic test flow execution description and test assertions

	Pass/Fail criteria

	The following things may be documented for the test case:

	Parameter border test cases descriptions

	Fault/Error test case descriptions

	Post conditions where the system state may be left changed after completion

New test case proposals should complete a OVP test case worksheet to ensure
that all of these considerations are met before the test case is approved for
inclusion in the OVP test suite.

10.3. Dovetail Test Suite Naming Convention

Test case naming and structuring must comply with the following conventions.
The fully qualified name of a test case must comprise three sections:

<test_project>.<test_area>.<test_case_name>

	test_project: The fully qualified test case name must identify the test
project which developed and maintains the test case.

	test_area: The fully qualified test case name must identify the test case
area. The test case area is a single word identifier describing the broader
functional scope of a test case, such as ha (high-availability), tempest, vnf,
etc.

	test_case_name: The fully qualified test case name must include a concise
description of the purpose of the test case.

An example of a fully qualified test case name is functest.tempest.compute.

11. Dovetail as a Generic Test Framework

11.1. Overview

Dovetail is responsible for the technical realization of the OPNFV Verification
Program (OVP) and other compliance verification projects within the scope of
the Linux Foundation Networking (LFN) umbrella projects.
Dovetail provides a generic framework for executing a specific set of test cases
which define the scope of a given compliance verification program, such as OVP.

This document aims at introducing what Dovetail generic framework looks like and
how to develop within this framework.

11.2. Introduction of Dovetail Framework

The following diagram illustrates Dovetail generic framework.

[image: ../../../_images/dovetail_generic_framework.png]
In this diagram, there are 5 main parts, TestcaseFactory, TestRunnerFactory,
CrawlerFactory, CheckerFactory and test case groups.

	TestcaseFactory: For each project, there needs to create its own
testcase class such as FunctestTestcase and OnapVtpTestcase. All these
classes are based on class Testcase. There are already many functions in this
base class which are mainly used to parse test case configuration files. If no
other special requirements exist, it only needs to initialize these classes with
different types. Otherwise, it needs to overload or add some functions.

	TestRunnerFactory: Similar to TestcaseFactory, each project has its own
test runner class. Dovetail supports 2 kinds of test runners, DockerRunner
and ShellRunner. For projects based on Docker, it needs to create
their own test runner classes such as FunctestRunner which inherit from class
DockerRunner. For other projects that are based on Shell, it can use ShellRunner
directly. Test case runners provide many functions to support test cases runs
such as preparing test tool of each project, run all the commands defined by
each test case and clean the environment.

	Test case groups: Each group is composed of one project configuration file
and a set of test cases belonging to this project. These groups are used as the
input of test runners to provide information of projects and test cases. For
ShellRunner, it only needs test case configuratons as the input.

	CrawlerFactory: This is used to parse the results of test cases and record
them with unified format. The original result data report by each project is
different. So it needs to create different crawler classes for different projects
to parse their results.

	CheckerFactory: This is used to check the result data generated by crawler.
Each project should have its own checker class due to the different requirements
of different projects.

11.3. Development with Dovetail Framework

Everyone who is interested in developing Dovetail framework to integrate new upstream
test cases will face one of the two following scenarios:

	Adding test cases that belong to integrated projects: There are already some
projects integrated in Dovetail. These projects are coming from OPNFV (Open Platform
for NFV) and ONAP (Open Network Automation Platform) communities. It will be
much easier to add new test cases that belong to these projects.

	Adding test cases that not belong to integrated projects: The test cases
may belong to other projects that haven’t been integrated into Dovetail yet.
These projects could be in OPNFV, ONAP or other communities. This scenario is a
little more complicated.

11.3.1. Test cases belonging to integrated projects

Dovetail framework already includes a large amount of test cases. All these test
cases are implemented by upstream projects in OPNFV and ONAP. The upstream
projects already integrated in Dovetail are Functest, Yardstick and Bottlenecks
from OPNFV and VNF SDK and VVP from ONAP.

In order to add a test case belonging to one of these projects, there
only need to add one test case configuration file which is in yaml format.
Following is the introduction about how to use the file to add one new test case.
Please refer to Dovetail test case github [https://github.com/opnfv/dovetail/tree/master/etc/testcase]
for all configuration files of all test cases.

Test case name in Dovetail:
 name: Test case name in Dovetail
 objective: Test case description
 validate:
 type: 'shell' or name of the project already integrated in Dovetail
 testcase: The original test case name called in the project that it is developed
 image_name: Name of the Docker image used to run this test
 pre_condition:
 - 'Commands needed to be executed before running this test'
 - 'e.g. cp src_file dest_file'
 cmds:
 - 'Commands used to run this test case'
 post_condition:
 - 'Commands needed to be executed after running this test case'
 report:
 source_archive_files:
 - test.log
 dest_archive_files:
 - path/to/archive/test.log
 check_results_files:
 - results.json
 portal_key_file: path/to/key/logs/xxx.log
 sub_testcase_list:
 - sub_test_1
 - sub_test_2
 - sub_test_3

This is the complete format of test case configuration file. Here are some
detailed description for each of the configuration options.

	Test case name in Dovetail: All test cases should be named as ‘xxx.yyy.zzz’.
This is the alias in Dovetail and has no relationship with its name in its own
project. The first part is used to identify the project where this test case
come from (e.g. functest, onap-vtp). The second part is used to classify this
test case according to test area (e.g. healthcheck, ha). Dovetail supports to
run whole test cases in one test suite with the same test area. Also the area
is used to group all test cases and generate the summary report at the end of
the test. The last part is special for this test case itself (e.g. image,
haproxy, csar). It’s better to keep the file name the same as the test case
name to make it easier to find the config file according to this test case
alias in Dovetail.

	validate: This is the main section to define how to run this test case.

	type: This is the type of this test case. It can be shell which means
running this test case with Linux bash commands within Dovetail container. Also it
can be one of the projects already integrated in Dovetail (functest, yardstick,
bottlenecks, onap-vtp and onap-vvp). Then this type is used to map to its project
configuration yaml file. For example, in order to add a test case
in OPNFV project Functest to Dovetail framework, the type here should be
functest, and will map to functest_config.yml for more configurations
in project level. Please refer to Dovetail project config github [https://github.com/opnfv/dovetail/tree/master/etc/conf] for more details.

	testcase: This is the name defined in its own project. One test case can
be uniquely identified by type and testcase. Take the test case
functest.vping.ssh as an example. Its type is ‘functest’ and testcase
is ‘vping_ssh’. With these 2 properties, it can be uniquely identified. End users only
need to know that there is a test case named functest.vping.ssh in OVP
compliance test scope. Dovetail Framework will run vping_ssh within Functest
Docker container.

	image_name: [optional] If the type is shell, there is no need to give
this. For other types, there are default docker images defined in their project
configuration files. If this test case uses a different docker image, it needs
to overwrite it by adding image_name here. The image_name here should only
be the docker image name without tag. The tag is defined in project’s configuration
file for all test cases belonging to this project.

	pre_condition: [optional] A list of all preparations needed by this
test case. If the list is the same as the default one in its project configuration
file, then there is no need to repeat it here. Otherwise, it’s necessary to
overwrite it. If its type is shell, then all commands in pre_condition,
cmds and post_condition should be executable within Dovetail Ubuntu 14.04
Docker container. If its type is one of the Docker runner projects, then all
commands should be executable within their own containers. For Functest, it’s
alpine 3.8. For Yardstick and Bottlenecks it’s Ubuntu 16.04. For VNF SDK it’s
Ubuntu 14.04. Also all these commands should not require network connection
because some commercial platforms may be offline environments in private labs.

	cmds: [optional] A list of all commands used to run this test case.

	post_condition: [optional] A list of all commands needed after executing
this test case such as some clean up operations.

	report: This is the section for this test case to archive some log files and
provide the result file for reporting PASS or FAIL.

	source_archive_files: [optional] If there is no need to archive any files,
this section can be removed. Otherwise, this is a list of all source files
needed to be archived. All files generated by all integrated projects will be
put under $DOVETAIL_HOME/results. In order to classify and avoid overwriting
them, it needs to rename some important files or move them to new directories.
Navigating directory $DOVETAIL_HOME/results to find out all files
needed to be archived. The paths here should be relative ones according to
$DOVETAIL_HOME/results.

	dest_archive_files: [optional] This should be a list corresponding to the
list of source_archive_files. Also all paths here should be relative ones
according to $DOVETAIL_HOME/results.

	check_results_files: This should be a list of relative paths of
the result files generated by this test case. Dovetail will parse these files
to get the result (PASS or FAIL).

	portal_key_file: This should be the key log file of this test case which will
be used by the OVP portal for review.

	sub_testcase_list: [optional] This section is almost only for Tempest tests
in Functest. Take functest.tempest.osinterop as an example. The sub_testcase_list
here is an check list for this kind of tempest tests. Only when all sub test
cases list here are passed, this test case can be taken as PASS. The other kind
of tempest tests is tempest_custom such as functest.tempest.image. Besides
taking the sub_testcase_list as the check list, it’s also used to generate an
input file of Functest to define the list of sub test cases to be tested.

11.3.2. Test cases not belonging to integrated projects

If test cases waiting to be added into Dovetail do not belong to any project
that is already integrated into Dovetail framework, then besides adding the test
case configuration files introduced before, there are some other files needed to
be added or modified.

11.3.2.1. Step 1: Add a project configuration file

For a new test case that belongs to a new project, it needs to create a project
configuration file to define this new project in Dovetail first. Now Dovetail
only supports integration of projects by using their Docker images. If this test
case should be run with shell runner, then can only add test case configuration
files with type ‘shell’ as describing before and skip the following steps. Following is
the introduction of how to use project configuration file to add one new project
into Dovetail. Please refer to Dovetail projects configuration github [https://github.com/opnfv/dovetail/tree/master/etc/conf] for all configuration
files of all integrated projects.

{% set validate_testcase = validate_testcase or '' %}
{% set testcase = testcase or '' %}
{% set dovetail_home = dovetail_home or '' %}
{% set debug = debug or 'false' %}
{% set build_tag = build_tag or '' %}
{% set userconfig_dir = '/tmp/userconfig' %}
{% set patches_dir = '/tmp/patches' %}
{% set result_dir = '/tmp/results' %}
{% set openrc_file = '/home/conf/env_file' %}

project name:
 image_name: name of the docker image
 docker_tag: tag of the docker image
 opts:
 detach: true
 stdin_open: true
 privileged: true
 shell: '/bin/bash'
 envs:
 - 'CI_DEBUG={{debug}}'
 - 'DEPLOY_SCENARIO={{deploy_scenario}}'
 - 'ENV_NAME=env_value'
 volumes:
 - '{{dovetail_home}}/userconfig:{{userconfig_dir}}'
 - '{{dovetail_home}}/results:{{result_dir}}'
 - '/path/on/host:/path/in/container'
 - '/path/of/host/file:/file/path/in/container'
 mounts:
 - 'source={{dovetail_home}}/pre_config/env_config.sh,target={{openrc_file}}
 - 'source={{dovetail_home}}/pre_config,target=/home/opnfv/pre_config'
 - 'source=/file/or/derectory/on/host,target=/file/or/derectory/in/container'
 patches_dir: {{patches_dir}}
 pre_condition:
 - 'Commands needed to be executed before running this test'
 cmds:
 - 'Commands used to run this test case'
 post_condition:
 - 'Commands needed to be executed after running this test case'
 openrc: absolute path of openstack credential files
 extra_container:
 - container1_name
 - container2_name

This is the complete format of project configuration file. Here are some
detailed description for each of the configuration options.

	Jinja Template: At the begining of this yaml file, it uses Jinja template
to define some parameters that will be used somewhere in this file (e.g. result_dir
and openrc_file). Besides those, there are some other parameters providing by Dovetail
framework as input of this file, and other parameters can be defined by using these
ones (e.g. testcase and dovetail_home). The whole input parameters which can be used
are list below.

	attack_host: This is the attack host name of the test case which calls this
project configuration file. It’s only for HA test cases and can be given in HA
configuration file pod.yaml.

	attack_process: This is the attack process name of the test case which calls
this project configuration file. It’s only for HA test cases and can be given in HA
configuration file pod.yaml.

	build_tag: This is a string includes the UUID generated by Dovetail.

	cacert: This is also only for OpenStack test cases. It is the absolute
path of the OpenStack certificate provided in env_config.sh file.

	deploy_scenario: This is the input when running Dovetail with option
–deploy-scenario.

	debug: This is True or False according to the command running test
cases with or without option –debug.

	dovetail_home: This is the DOVETAIL_HOME getting from the ENV.

	os_insecure: This is only for test cases aiming at OpenStack. This is
True or False according to env_config.sh file.

	testcase: This is the name of the test case which calls this project
configuration file. Different from validate_testcase, this is the alias
defined in Dovetail not in its own project.

	validate_testcase: This is the name of the test case instance which calls this
project configuration file. The name is provided by the configuration file
of this test case (validate -> testcase).

	project name: This is the project name defined in Dovetail. For example
OPNFV Functest project is named as ‘functest’ here in Dovetail. This project
name will be used by test case configuration files as well as somewhere in
Dovetail source code.

	image_name: This is the name of the default Docker image for most test cases
within this project. Each test case can overwrite it with its own configuration.

	docker_tag: This is the tag of all Docker images for all test cases within
this project. For each release, it should use one Docker image with a stable
and official release version.

	opts: Here are all options used to run Docker containers except ‘image’,
‘command’, ‘environment’, ‘volumes’, ‘mounts’ and ‘extra_hosts’. For example,
the options include ‘detach’, ‘privileged’ and ‘tty’. The full list of all
options can be found in Docker python SDK docs [https://docker-py.readthedocs.io/en/stable/containers.html].

	shell: This is the command used to run in the container.

	envs: This is a list of all envs used to run Docker containers.

	volumes: A volume mapping list used to run Docker containers. The source volumes
list here are allowed to be nonexistent and Docker will create new directories for them
on the host. Every project should at least map the $DOVETAIL_HOME/results
in the test host to containers to collect all result files.

	mounts: A mount mapping list used to run Docker containers. More powerful alternative
to volumes. The source volumes list here are not allowed to be nonexistent.
Every project should at least mount the $DOVETAIL_HOME/pre_config in the test host to
containers to get config files.

	patches_dir: [optional] This is an absolute path of the patches applied to
the containers.

	pre_condition: A list of all default preparations needed by this project.
It can be overwritten by configurations of test cases.

	cmds: A list of all default commands used to run all test cases within
this project. Also it can be overwritten by configurations of test cases.

	post_condition: A list of all default cleaning commands needed by this
project.

	openrc: [optional] If the system under test is OpenStack, then it needs to
provide the absolute path here to copy the credential file in the Test Host to
containers.

	extra_container: [optional] The extra containers needed to be removed at the
end of the test. These containers are created by the test cases themselves at
runtime rather than created by Dovetail.

11.3.2.2. Step 2: Add related classes

After adding the project and test case configuration files, there also need to
add some related classes into the source code.

	Test Case class: Each project should have its own test case class in
testcase.py for TestcaseFactory.

	Test Runner class: Each project should have its own test runner class in
test_runner.py for TestRunnerFactory.

	Crawler class: Each project should have its own test results crawler class
in report.py for CrawlerFactory.

	Checker class: Each project should have its own test results checker class
in report.py for CheckerFactory.

11.3.2.3. Step 3: Create related logs

If the classes added in step2 have function create_log, then need to call
these functions in run.py to initial the log instances at the very begining.

11.3.2.4. Step 4: Update unit tests

A patch is not going to be verified without 100% coverage when applying acceptance check.

12. OPNFV Verification Program (OVP) 2019.12 / Dovetail 3.0.0 Release Note

12.1. OPNFV 2019.12 Release

The OPNFV Verification Program (OVP) allows vendors and operators to obtain ‘OPNFV Verified’
status based on an agreed upon set of compliance verification test cases that align to OPNFV
releases. The reference System under Test (SUT) is either the NFV components deployed by the OPNFV
installers for a given release, where OVP 2019.12 is based on the OPNFV Hunter release, or a VNF
being on-boarded and orchestrated by the ONAP El Alto release. Participants of the program can
verify commercial or open source offerings against an OVP release. This implies that the SUT
used for verification has interfaces, components, functions and behaviors that align to OPNFV
installer integrations and ONAP deployments.

Dovetail is the overall framework used to execute tests and collect results for the OVP
Infrastructure badge. Dovetail does not deliver test content directly. Rather, test content
is developed in other OPNFV test frameworks such as Functest and upstream test communities such
as OpenStack’s RefStack/Tempest projects. Dovetail leverages this upstream test content and
provides a common set of test platform services for the OVP.

Approved test tools (OPNFV Dovetail, ONAP VTP, and ONAP VVP) work in conjunction with a web portal
interface dubbed the ‘OVP web portal’ to allow users to upload test results to a centralized community
repository. This facilitates user collaboration, result sharing, self-testing and community reviews.
It also serves as a hub for new participants to learn about the program and access key resources. The
link for this portal is at: OPNFV Verification Program [https://nfvi-verified.lfnetworking.org].

Use of the OVP web portal is open to all and only requires a valid Linux Foundation
ID to login. Users are welcome to use the portal to upload, inspect and share results in a private
manner. In order to submit results for official review, the first step is apply for acceptance
into the program with the participation form provided in the link: OPNFV Verification Program
Participation Form [https://na3.docusign.net/Member/PowerFormSigning.aspx?PowerFormId=dc24bf38-ea41-40d4-9e58-9babc6eec778]

12.1.1. NFVI Test Suites and Test Areas

OVP/Dovetail groups test cases into test suites and test areas. Test suites are currently a basic
categorization around releases for the most part. Executing the test suite ‘ovp.2019.12’ without
further specification will run all the test cases in the OVP 2019.12 release. Test suites are
divided into test areas that can be executed separately.

Test cases include a division into ‘mandatory’ and ‘optional’ in an overarching
categorization.

All the mandatory test cases are required to be executed with passing results for all inclusive
test cases for results to be reviewed and approved by the community made up of peer reviewers.
The optional test cases are not required to be executed for the official compliance verification
review in the OVP 2019.12 release. However, execution of these cases is encouraged, as some
optional test cases may become mandatory in future releases.

12.1.2. NFVI Test Cases and Sub Test Cases

Each test area consists of multiple test cases where each test case can be a single test or
broken down into sub test cases. A listing of test cases with the number of sub test cases noted
in parenthesis is shown below for the OVP 2019.12 release.

Mandatory

	bottlenecks.stress.ping (1)

	functest.vping.userdata (1)

	functest.vping.ssh (1)

	functest.tempest.osinterop (219)

	functest.tempest.compute (12)

	functest.tempest.identity_v3 (11)

	functest.tempest.image (2)

	functest.tempest.network_api (14)

	functest.tempest.volume (2)

	functest.tempest.neutron_trunk_ports (38)

	functest.tempest.ipv6_api (21)

	functest.security.patrole (124)

	yardstick.ha.nova_api (1)

	yardstick.ha.neutron_server (1)

	yardstick.ha.keystone (1)

	yardstick.ha.glance_api (1)

	yardstick.ha.cinder_api (1)

	yardstick.ha.cpu_load (1)

	yardstick.ha.disk_load (1)

	yardstick.ha.haproxy (1)

	yardstick.ha.rabbitmq (1)

	yardstick.ha.database (1)

There are a total of 456 mandatory test cases.

Optional

	functest.vnf.vims (1)

	functest.vnf.vepc (1)

	functest.tempest.ipv6_scenario (8)

	functest.tempest.multi_node_scheduling (6)

	functest.tempest.network_security (6)

	functest.tempest.vm_lifecycle (12)

	functest.tempest.network_scenario (5)

	functest.tempest.bgpvpn (21)

	functest.security.patrole_vxlan_dependent (2)

	yardstick.ha.neutron_l3_agent (1)

	yardstick.ha.controller_restart (1)

There are a total of 64 optional test cases.

12.1.3. OPNFV Test Projects and Components

The OPNFV test frameworks integrated into the Dovetail framework that deliver test content are:

	Functest (leverages OpenStack RefStack/Tempest projects in addition to supplying native test cases)

	Yardstick

	Bottlenecks

12.1.4. ONAP Test Projects and Components

The ONAP test projects and components used with this OVP release to provide the test requirements
and test scripting are:

	VNFRQTS

	VNFSDK

	VVP

12.1.5. Acceptence and Marketing

Upon successful community review of results for OVP 2019.12, the Linux Foundation Compliance
Verification Committee (LFN CVC) on behalf of the Board of Directors can award a product ‘OPNFV
Verified’ status. Use of ‘OPNFV Verified’ Program Marks shall be awarded to the platform used
for compliance verification. The category label of ‘Infrastructure’ is used within the Program
Marks logo and limits the scope of this OVP release to a SUT consisting of NFVI and VIM components
using ETSI terminology. It does not provide compliance verification for specific VNFs in any fashion.
The date ‘2019.12’ corresponds to a reference SUT that aligns to the OPNFV Hunter release and
currently aligns to the Dovetail framework version 3.0.0.

Organizations shall not use the Program Marks in any way that would associate it with any
individual or company logo or brand, beyond the association to the specific platform to which it
was awarded. While OpenStack RefStack interoperability and Tempest integration test cases are
executed as part of the OVP 2019.12 compliance verification test suites, the OVP does not grant or
award OpenStack Marks in any fashion. ‘OPNFV Verified’ status does not assert readiness for
commercial deployment.

Please refer to the program governance guidelines and term & conditions documents for additional
details using the respective links:

	OVP Governance Guidelines [https://www.opnfv.org/wp-content/uploads/sites/12/2018/01/OVP-Governance-Guidelines-1.0.1-012218.pdf]

	OVP Terms and Conditions [https://www.opnfv.org/wp-content/uploads/sites/12/2018/01/OVP-Terms-and-Conditions-011918.pdf]

12.2. Release Data

	Project

	Dovetail

	Repo tag

	ovp-3.0.1

	Release designation

	OPNFV Verification Program (OVP)
2019.12 (Hunter)

	Release date

	December 2019

	Purpose of the delivery

	Support OVP 2019.12 release with
OPNFV Hunter release as reference SUT

	Notes

	Point release ovp-3.0.1 updates,
changes, and corrects the
documentation only.

12.3. Deliverables

12.3.1. Software

12.3.1.1. OPNFV Software

	Docker Container

	Docker Image

	Tag

	dovetail

	opnfv/dovetail

	ovp-3.0.0

	functest

	opnfv/functest-smoke

	hunter

	functest

	opnfv/functest-healthcheck

	hunter

	functest

	opnfv/functest-vnf

	hunter

	yardstick

	opnfv/yardstick

	opnfv-8.0.0

	bottlenecks

	opnfv/bottlenecks

	8.0.1-latest

Docker images:

	Dovetail Docker images [https://hub.docker.com/r/opnfv/dovetail]

	Functest-smoke Docker images [https://hub.docker.com/r/opnfv/functest-smoke/]

	Functest-healthcheck Docker images [https://hub.docker.com/r/opnfv/functest-healthcheck/]

	Functest-vnf Docker images [https://hub.docker.com/r/opnfv/functest-vnf/]

	Yardstick Docker images [https://hub.docker.com/r/opnfv/yardstick/]

	Bottlenecks Docker images [https://hub.docker.com/r/opnfv/bottlenecks/]

12.3.1.2. ONAP Software

	Item

	Repo Link

	VTP/VNFSDK Test Scripts

	https://gerrit.onap.org/r/admin/repos/vnfsdk/refrepo

	VVP Robot Test Scripts

	https://gerrit.onap.org/r/admin/repos/oom

12.3.2. Documents

	System Preparation Guide [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/systempreparation/index.html]

	NFVI User Guide [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/userguide/testing_guide.html]

	VNF User Guide: [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/userguide/testing_guide.html]

	OVP NFVI Test Specifications [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/testspecification/index.html]

	ONAP VNF Test Specifications [https://docs.onap.org/en/elalto/submodules/vnfrqts/testcases.git/docs/index.html]

	Dovetail CLI Reference [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/userguide/cli_reference.html]

	Dovetail RESTful API [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/userguide/api_testing_guide.html]

	OVP Workflow [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/certificationworkflow/index.html]

	OVP Reviewer Guide [https://opnfv-dovetail.readthedocs.io/en/stable-hunter/testing/user/reviewerguide/index.html]

12.4. Testing with OPNFV Hunter Installers

OVP 2019.12 and Dovetail 3.0.0 are known to be have been tested with the following OPNFV
Hunter installer versions.

	Installer

	Version

	Fuel

	stable/hunter

12.5. Hunter Known Restrictions/Issues

Please refer to the OPNFV and ONAP JIRA for known issues with each applicable project:

	https://jira.opnfv.org/projects/DOVETAIL

	https://jira.onap.org/projects/VVP

	https://jira.onap.org/projects/VNFSDK

12.6. Useful Links

	OVP Web Portal [https://nfvi-verified.lfnetworking.org]

	Wiki Project Page [https://wiki.opnfv.org/display/dovetail]

	Dovetail Repo [https://git.opnfv.org/dovetail/]

	Dovetail CI dashboard [https://build.opnfv.org/ci/view/dovetail/]

	JIRA dashboard [https://jira.opnfv.org/secure/RapidBoard.jspa?rapidView=149]

	Dovetail IRC Channel: #opnfv-dovetail

	Dovetail Test Configuration [https://git.opnfv.org/dovetail/tree/etc/compliance/ovp.2019.12.yaml]

Index

Conducting OVP Testing with Dovetail using XCI installer

Overview

The purpose of this document is to give tips for the dovetail deployment
on XCI installer.
The general structure of the document is remaining according to the user guide
document and the XCI related tips will be added under of the respective
chapter’s name.

In order to deploy properly the XCI installer the below steps should be followed:

1- The prerequisites of chapter 2.4.1 of XCI User Guide [1] should be applied.

	2- If you don’t have one already, generate an SSH key in $HOME/.ssh
	ssh-keygen -t rsa

3- Clone OPNFV releng-xci repository

	4- Change into directory where the sandbox script is located:
	cd releng-xci/xci

5- Set the sandbox flavor, OPNFV scenario, openstack version, VM size and releng_xci and bifrost versions:

export INSTALLER_TYPE=osa
export XCI_FLAVOR=xxx ,chapter 2.3 of XCI User Guide [1]
(e.g. export XCI_FLAVOR=mini)
export DEPLOY_SCENARIO=yyy
(e.g. export DEPLOY_SCENARIO=os-nosdn-nofeature)

	6- Execute the sandbox script
	./xci-deploy.sh

Once the deployement is successfully completed, the instructions below should be completed:

1- You should access the OPNFV VM using ssh (ssh root@192.168.122.2)

2- export DEPLOY_SCENARIO=yyy

	3- export PDF=/root/releng-xci/xci/var/pdf.yml
	export IDF=/root/releng-xci/xci/var/idf.yml
source openrc

	4- Run the following ansible playbook script:
	ansible-playbook -i releng-xci/xci/playbooks/dynamic_inventory.py releng-xci/xci/playbooks/prepare-tests.yml

	5- Run the following bash script:
	./prepare-tests.sh

[1] https://docs.opnfv.org/en/latest/infrastructure/xci.html

Installing Dovetail

Checking the Test Host Readiness

Installing Prerequisite Packages on the Test Host

Configuring the Test Host Environment

In order to run the test scenarios properly and having access to all OS components
that each scenario needs, the undercloud credentials should be used and copied in the
docker container along with ssh key.

The environment preparation should be applied on the Test Host environment.
Therefore, the containers which are going to be used as part of this configuration,
fetch the information, the files and the rest input from Test Host environment directly
as part of the Docker command.

Setting up Primary Configuration File

Two new environment variables could be introduced in the env_config.sh file.

For XCI installer the following environment parameters should be added in
this file. Otherwise, those parameters could be ignored.
export INSTALLER_TYPE=osa
export DEPLOY_SCENARIO=os-nosdn-nofeature
export XCI_FLAVOR=noha

The OS_PASSWORD and the rest credential details could be retrieved directly by openrc file in the OPNFV VM.

Configuration for Running Tempest Test Cases (Mandatory)

In order for Tempest Test cases to run properly, the $DOVETAIL_HOME/pre_config/tempest_conf.yaml
file should be updated, introducing the following configuration.

	service_available:
	cinder: True

Configuration for Running HA Test Cases (Mandatory)

Below is a sample of ${DOVETAIL_HOME}/pre_config/pod.yaml file with
the required syntax when key_filename is used instead of password is employed
by the controller.
Moreover, the ‘heat-admin’ should be used as user.

nodes:
-
 # This can not be changed and must be node0.
 name: node0

 # This must be Jumpserver.
 role: Jumpserver

 # This is the instance IP of a node which has ipmitool installed.
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: root

 # Password of the user.
 #password: root
 key_filename: /root/.ssh/id_rsa

-
 # This can not be changed and must be node1.
 name: node1

 # This must be controller.
 role: Controller

 # This is the instance IP of a controller node, which is the haproxy primary node
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: root

 # Password of the user.
 #password: root
 key_filename: /root/.ssh/id_rsa

-
 # This can not be changed and must be node2.
 name: node2

 # This must be Compute.
 role: Compute

 # This is the instance IP of a controller node, which is the haproxy primary node
 ip: xx.xx.xx.xx

 # User name of the user of this node. This user **must** have sudo privileges.
 user: root

 # Password of the user.
 #password: root
 key_filename: /root/.ssh/id_rsa

process_info:
-
 # The default attack process of yardstick.ha.rabbitmq is 'rabbitmq-server'.
 # Here can be reset to 'rabbitmq'.
 testcase_name: yardstick.ha.rabbitmq
 attack_process: rabbitmq

-
 # The default attack host for all HA test cases is 'node1'.
 # Here can be reset to any other node given in the section 'nodes'.
 testcase_name: yardstick.ha.glance_api
 attack_host: node2

Note: The definition for each active controller and computer should be done in this file.

Configuration of Hosts File (Optional)

Installing Dovetail on the Test Host

Online Test Host

Offline Test Host

Starting Dovetail Docker

Running the OVP Test Suite

Making Sense of OVP Test Results

OVP Portal Web Interface

Updating Dovetail or a Test Suite

 _images/ovp_vping_user.png
PROJECT | ouRaTIN | ResuT

TEST case

functest |

vping_userdata

t—d—a

_images/review_status.png
x

Linux Foundation
Reviewer Openld Email Review Date Outcome

Demo_Reviewer CVP CVP_Demo_Reviewer cvp_demo_reviewer@163.com 2019-12-1308:08:09 positive

_images/ovp_top_nav.png
£ 0PNFV OPNFV Verification Program (OVP) - NFVI Portal

VERIFIED [T ENEER |Vy Results Profile Sign Out

_images/ovp_vping_ssh.png
PROJECT | Resut

TEST case

vping_ssh functest | | Pass.

t—t—1

_images/tocsa_vnf_test_environment.png
OCOMP
profile™

VTP
Test

Controller

nur

©Open Command Platform [OCOMP] - VTP Test Orchestrator

*CSAR - Vendor VNF CSAR
** OCOMP profile — Stores ONAP services URL and credentials

CITHELINUX FOUNDATION CILF

_images/tosca_vnf_test_flow.png
(Vsetu P)
e”
oo —

(standup)

_images/sut_endpoints.png
Endpoints

Service Name Service Type URL Enabled
cinderv2 volumev2 hitps://192.168.10.222:8776/v2/%(tenant_ic)s true
nova, compute hitps://192.168.10 222:8774V2. 1 true
placement placement hitps://192.168.10.222:8780 true
aodn alaming hitps://192.168.10.222:8042 true
keystone dentity itps://192.168.10.222:5000 true
cinder volume hitps://192.168.10.222:8776/v1/%(ienant_id)s true
cinderv3 volumeva hitps://192.168.10.222:8776/va/%(tenant_ic)s true
[Gane Tmage Tiips /192, 166.10.222.9252 e |
gnocehi metric Nitps://192.168.10.222:8041 true
heat-ctn cloudtormation hitps://192.168.10.222: 80001 true
heat orchestration hitps://192.168.10.222:8004/v L% tenant_ic)s true
neutron network hiips /192,168, 10 222:969 e
tacker nfv-orchestration Nitps://192.168.10.222:9890 true

_images/sut_info.png
ovP Review
Upload Date TestID Version Owner File Name Label Status Log SUT Application Status Operation Share List

review logs [[info | View Applcation View Reviews

2019-12-1306:58:21 3b5ed4fd 2019.12 CVP_Demo_Vendor logs_20191209_1712.targz e

_images/ovp_pass_fraction.png
Test Result Overview
Test Filters:
All | Passed | Skipped Not Passed

mandatory: 456 tests

bottlenecks.stress.ping [1/1] &

functest security. patrold [124/124]j All passed

functest tempest.compute [12712]

functest.tempest identity_v3 [11/11] &

functest tempest image [2/2]

functest tempestipvé_ay

functest tempest. network_api [

functest.tempest neutron_trunk_ports [38/38] £
9. functest.tempest osinterop [219/219] £

10. functest tempest.volume [2/2] &

11. functest.vping.ssh [1/1] &

12. functest.vping.userdata [1/1] &

13. yardstick ha cinder_: o

14. yardstick ha.cpu_loa

15. yardstick ha.database [0/1] &

16. yardstick ha.disk_load [0/1] &

17. yarastick ha.glance_api [0/1] £

18. yardstick ha_haproxy [0/1] &

19. yardstick ha_keystone [0/1] &

20. yardstick.ha.neutron_server [0/1] £

21. yardstick.ha.nova_api [0/1] &

22. yardstick.ha.rabbitmq [0/1] £

SN NN

All failed

_images/ovp_pass_percentage.png
Test Run Results

OVP version: 2019.12
Test ID: 3b5e44f5-1aa0-11ea-94e6-0242ac110001

Mandatory Total: 456, Pass: 441, Rate: 96.71%

_images/ovp_log_files_functest_image.png
Verfication UUID Status Started at Finished at Tests . success skpped CECled unexpected

251695047693 454

ZUUTCANC ey 2010.00.16T020622 0IB0DIGTO20655 2 14576 2 o o o o
Fitertests by status: [@ @ @ @

Toggle All Fiters.

Test name (shovn)« 26169504.7693.464c.8a36.cal06d00ta0c.

empestaplimage v2es_images BascOperaonsmagesTesL es_regile_uposd_goL_Image_e Sucoess 1445

tempest apiimage.v2.test_versions VersionsTest test_lst_versions success 0,015

_images/ovp_log_setup.png
Test Result Overview
Test Filters:
All | Passed | Skipped Not Passed

mandatory: 456 tests

1. bottlenecks stress.ping [1/1] &

2. functest.security. patrole [124/124] &
3. functest.tempest.compute [12/12] &
4. functest.tempest.identity_v3 [11/11] &
5. functest tempest.image [2/2] £

_images/ovp_result_review.png
Upload Date

2019-12-13 06:58:21

TestID

ovP

Version Owner

3bSed4fs

2019.12

CVP_Demo_Vendor

File Name

logs_20191209_1712.targz

Label

Review

Status Log SUT Application Status

review

logs

info

View Application View Reviews

Operation

Operat

Share List

Share List~

_static/file.png

nav.xhtml

 Table of Contents

 		
 Dovetail

 		
 OPNFV Verification Program Application Form

 		
 OVP Workflow

 		
 Introduction

 		
 Step 1: Participation Form Submission

 		
 Step 2: Testing

 		
 NFVI Testing

 		
 VNF Testing

 		
 Step 3: Submitting Test Results

 		
 Step 4: OVP Review

 		
 Step 5: Grant of Use of Program Marks

 		
 OVP Testing User Guide per Installer

 		
 Conducting OVP Testing with Dovetail using APEX installer

 		
 Overview

 		
 Installing Dovetail

 		
 Starting Dovetail Docker

 		
 Running the OVP Test Suite

 		
 OVP Portal Web Interface

 		
 Updating Dovetail or a Test Suite

 		
 Disabling Strict API Validation in Tempest

 		
 Introduction

 		
 Background and benefits for OVP

 		
 Example: additional attributes per VM for HA policy

 		
 Precedent in OpenStack

 		
 Exemption process for additional properties in API responses in the OVP

 		
 Guidelines Addendum for 2019.12 release

 		
 Introduction

 		
 Meaning of Compliance

 		
 SUT Assumptions

 		
 Scope of Testing

 		
 General Approach

 		
 Analysis of Scope

 		
 Scope of the 2019.12 release of the OVP

 		
 Scope considerations for future OVP releases

 		
 Criteria for Awarding Compliance

 		
 Exemption from strict API response validation

 		
 OVP Reviewer Guide

 		
 Introduction

 		
 Test Case Pass Percentage

 		
 Mandatory Test Case Results

 		
 Log File Verification

 		
 Bottlenecks Logs

 		
 Functest Logs

 		
 Yardstick Logs

 		
 SUT Info Verification

 		
 Approve or Not Approve Results

 		
 OVP NFVI System Preparation Guide

 		
 OVP Test Specifications

 		
 Introduction

 		
 OpenStack Services HA test specification

 		
 Patrole Tempest Tests

 		
 Patrole Tempest Tests Depend on Vxlan

 		
 Stress Test Specification

 		
 Tempest Compute test specification

 		
 Tempest Identity v3 test specification

 		
 Tempest Image test specification

 		
 IPv6 test specification

 		
 VM Resource Scheduling on Multiple Nodes test specification

 		
 Tempest Network API test specification

 		
 Tempest Network Scenario test specification

 		
 Security Group and Port Security test specification

 		
 OpenStack Interoperability Test Specification

 		
 Neutron Trunk Port Tempest Tests

 		
 Common virtual machine life cycle events test specification

 		
 Tempest Volume test specification

 		
 VNF test specification

 		
 Vping Test Specification

 		
 VPN test specification

 		
 OVP Testing User Guide

 		
 Conducting OVP NFVI Testing with Dovetail

 		
 Overview

 		
 Installing Dovetail

 		
 Starting Dovetail Docker

 		
 Running the OVP Test Suite

 		
 OVP Portal Web Interface

 		
 Updating Dovetail or a Test Suite

 		
 Dovetail Command Line Interface Reference

 		
 Commands List

 		
 Commands Examples

 		
 Running Dovetail by RESTful API

 		
 Overview

 		
 Definitions and abbreviations

 		
 Environment Preparation

 		
 Installing Dovetail API

 		
 Using Dovetail API

 		
 Conducting ONAP VNF Testing for OVP

 		
 Overview

 		
 Definitions and abbreviations

 		
 Testing of HEAT based VNFs

 		
 Testing of TOSCA based VNFs

 		
 OVP Test Case Requirements

 		
 OVP Test Suite Purpose and Goals

 		
 Test Case Requirements

 		
 Dovetail Test Suite Naming Convention

 		
 Dovetail as a Generic Test Framework

 		
 Overview

 		
 Introduction of Dovetail Framework

 		
 Development with Dovetail Framework

 		
 Test cases belonging to integrated projects

 		
 Test cases not belonging to integrated projects

 		
 OPNFV Verification Program (OVP) 2019.12 / Dovetail 3.0.0 Release Note

 		
 OPNFV 2019.12 Release

 		
 NFVI Test Suites and Test Areas

 		
 NFVI Test Cases and Sub Test Cases

 		
 OPNFV Test Projects and Components

 		
 ONAP Test Projects and Components

 		
 Acceptence and Marketing

 		
 Release Data

 		
 Deliverables

 		
 Software

 		
 Documents

 		
 Testing with OPNFV Hunter Installers

 		
 Hunter Known Restrictions/Issues

 		
 Useful Links

_images/dovetail_offline_mode.png
, Tester’s lab “'\

Pull Dovetail Docker and all

dependent Dockerimages and Test Host

install manually

Management
network

SUT

HENNN
S I

Internal data
path network

.. Download tar.gz
%, result file

Interface to
public
Internet

. Upload result file

to OVP Portal

*:0PNFV
Server F—,]

OPNFV Verified Program

= < https://verified.opnfv.org/

_images/dovetail_online_mode.png
Management
network

Install Dovetail
Docker

Test Host

SUT

Internal data
path network

HENNN
S I

N Download tar.gz
. result file

Interface to
public
Internet

. Upload result file

to OVP Portal

Server F—,]

OPNFV Verified Program

= < https://verified.opnfv.org/

_static/minus.png

_images/dovetail_generic_framework.png
TestRunnerfactor
y

Beé
B

FunctestRunner

FunctestK8sRunner

B

VardstickRunner

OrapVipRumer ﬂ

BottlenecksRunner

=)

s-testLyml

ShelRunner

s-testxyml

Crawlerfactory CheckerFactory

f testlyml @
"

EE)

o_testLyml

onap-vtp

f test2yml

gyml

a o_test2yml

_configyml

_static/plus.png

