

OPNFV Functest

	Functest Installation Guide

	Functest User Guide

	Functest Developer Guide

	Functest Release Notes

Functest Installation Guide

	Introduction
	High level architecture

	Prerequisites
	Docker installation

	Public/External network on SUT

	Installation and configuration
	Functest Dockers for OpenStack deployment

	Functest Dockers for Kubernetes deployment

	Environment variables

	Openstack credentials
	SSL Support

	Logs

	Configuration

	Tips
	Docker

	Checking Openstack and credentials

	Proxy support

	Docker Installation on CentOS behind http proxy

	Integration in CI

References

[1] [https://github.com/opnfv/releng/blob/master/jjb/functest/functest-daily-jobs.yaml] : Functest Jenkins jobs

IRC support channel: #opnfv-functest

Introduction

This document describes how to install and configure Functest in OPNFV.

High level architecture

The high level architecture of Functest within OPNFV can be described as
follows:

CIMC/Lights+out management Admin Mgmt/API Public Storage Private
 PXE
+ + + + + +
+----------------------------+						
+-----+ Jumphost						
	+--------------------+					
		Tools	+----------------+			
		- Rally				
		- Robot				
		- RefStack				
				-------------------------+		
		Testcases				
		- VIM				
		- SDN Controller				
		- Features				
		- VNF				
	+--------------------+					
	Functest Docker +					
+----------------------------+						
+----------------+						
	1					
+----+ +--------------+-+						
		2				
		+--------------+-+				
			3			
			+--------------+-+			
				4		
+-+		+--------------+-+				
				5 +-------------+		
+-+		nodes for				
			deploying +---------------------+			
+-+	OPNFV					
		+------------------------------+				
+-+ SUT						
	+--------------------------------------+					
	+--+					
+----------------+						
+ + + + + +
 SUT = System Under Test

Note connectivity to management network is not needed for most of the
testcases. But it may be needed for some specific snaps tests.

All the libraries and dependencies needed by all of the Functest tools are
pre-installed into the Docker images. This allows running Functest on any
platform.

The automated mechanisms inside the Functest Docker containers will:

	Prepare the environment according to the System Under Test (SUT)

	Perform the appropriate functional tests

	Push the test results into the OPNFV test result database (optional)

The OpenStack credentials file must be provided to the container.

These Docker images can be integrated into CI or deployed independently.

Please note that the Functest Docker images have been designed for OPNFV,
however, it would be possible to adapt them to any OpenStack based VIM +
controller environment, since most of the test cases are integrated from
upstream communities.

The functional test cases are described in the Functest User Guide

Prerequisites

The OPNFV deployment is out of the scope of this document but it can be
found in http://docs.opnfv.org.
The OPNFV platform is considered as the SUT in this document.

Several prerequisites are needed for Functest:

	A Jumphost to run Functest on

	A Docker daemon shall be installed on the Jumphost

	A public/external network created on the SUT

	An admin/management network created on the SUT

	Connectivity from the Jumphost to the SUT public/external network

Some specific SNAPS tests may require a connectivity from the Jumphost to the
SUT admin/management network but most of the test cases do not. This
requirement can be changed by overriding the ‘interface’ attribute
(OS_INTERFACE) value to ‘public’ in the credentials file. Another means to
circumvent this issue would be to change the ‘snaps.use_keystone’ value from
True to False.

WARNING: Connectivity from Jumphost is essential and it is of paramount
importance to make sure it is working before even considering to install
and run Functest. Make also sure you understand how your networking is
designed to work.

NOTE: Jumphost refers to any server which meets the previous
requirements. Normally it is the same server from where the OPNFV
deployment has been triggered previously, but it could be any server
with proper connectivity to the SUT.

NOTE: If your Jumphost is operating behind a company http proxy and/or
firewall, please consult first the section Proxy support, towards
the end of this document. The section details some tips/tricks which
may be of help in a proxified environment.

Docker installation

Docker installation and configuration is only needed to be done once
through the life cycle of Jumphost.

If your Jumphost is based on Ubuntu, SUSE, RHEL or CentOS linux, please
consult the references below for more detailed instructions. The
commands below are offered as a short reference.

Tip: For running docker containers behind the proxy, you need first
some extra configuration which is described in section
Docker Installation on CentOS behind http proxy. You should follow that
section before installing the docker engine.

Docker installation needs to be done as root user. You may use other
userid’s to create and run the actual containers later if so desired.
Log on to your Jumphost as root user and install the Docker Engine
(e.g. for CentOS family):

curl -sSL https://get.docker.com/ | sh
systemctl start docker

Tip: If you are working through proxy, please set the https_proxy
environment variable first before executing the curl command.

Add your user to docker group to be able to run commands without sudo:

sudo usermod -aG docker <your_user>

	A reconnection is needed. There are 2 ways for this:

	
	Re-login to your account

	su - <username>

	References - Installing Docker Engine on different Linux Operating Systems:

	
	Ubuntu [https://docs.docker.com/engine/installation/linux/ubuntulinux/]

	RHEL [https://docs.docker.com/engine/installation/linux/rhel/]

	CentOS [https://docs.docker.com/engine/installation/linux/centos/]

	SUSE [https://docs.docker.com/engine/installation/linux/suse/]

Public/External network on SUT

Some of the tests against the VIM (Virtual Infrastructure Manager) need
connectivity through an existing public/external network in order to
succeed. This is needed, for example, to create floating IPs to access
VM instances through the public/external network (i.e. from the Docker
container).

By default, the five OPNFV installers provide a fresh installation with
a public/external network created along with a router. Make sure that
the public/external subnet is reachable from the Jumphost and an external
router exists.

Hint: For the given OPNFV Installer in use, the IP sub-net address
used for the public/external network is usually a planning item and
should thus be known. Ensure you can reach each node in the SUT, from the
Jumphost using the ‘ping’ command using the respective IP address on the
public/external network for each node in the SUT. The details of how to
determine the needed IP addresses for each node in the SUT may vary according
to the used installer and are therefore ommitted here.

Installation and configuration

Alpine containers have been introduced in Euphrates.
Alpine allows Functest testing in several very light containers and thanks to
the refactoring on dependency management should allow the creation of light and
fully customized docker images.

Functest Dockers for OpenStack deployment

Docker images are available on the dockerhub:

	opnfv/functest-core

	opnfv/functest-healthcheck

	opnfv/functest-smoke

	opnfv/functest-benchmarking

	opnfv/functest-features

	opnfv/functest-components

	opnfv/functest-vnf

Preparing your environment

cat env:

EXTERNAL_NETWORK=XXX
DEPLOY_SCENARIO=XXX # if not os-nosdn-nofeature-noha scenario
NAMESERVER=XXX # if not 8.8.8.8

See section on environment variables for details.

cat env_file:

export OS_AUTH_URL=XXX
export OS_USER_DOMAIN_NAME=XXX
export OS_PROJECT_DOMAIN_NAME=XXX
export OS_USERNAME=XXX
export OS_PROJECT_NAME=XXX
export OS_PASSWORD=XXX
export OS_IDENTITY_API_VERSION=3

See section on OpenStack credentials for details.

Create a directory for the different images (attached as a Docker volume):

mkdir -p images && wget -q -O- https://git.opnfv.org/functest/plain/functest/ci/download_images.sh?h=stable/fraser | bash -s -- images && ls -1 images/*

images/CentOS-7-aarch64-GenericCloud.qcow2
images/CentOS-7-aarch64-GenericCloud.qcow2.xz
images/CentOS-7-x86_64-GenericCloud.qcow2
images/cirros-0.4.0-x86_64-disk.img
images/cirros-0.4.0-x86_64-lxc.tar.gz
images/cloudify-manager-premium-4.0.1.qcow2
images/shaker-image-arm64.qcow2
images/shaker-image.qcow
images/ubuntu-14.04-server-cloudimg-amd64-disk1.img
images/ubuntu-14.04-server-cloudimg-arm64-uefi1.img
images/ubuntu-16.04-server-cloudimg-amd64-disk1.img
images/vyos-1.1.7.img

Testing healthcheck suite

Run healthcheck suite:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 opnfv/functest-healthcheck:gambia

Results shall be displayed as follows:

+----------------------------+------------------+---------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+----------------------------+------------------+---------------------+------------------+----------------+
connection_check	functest	healthcheck	00:09	PASS
tenantnetwork1	functest	healthcheck	00:14	PASS
tenantnetwork2	functest	healthcheck	00:11	PASS
vmready1	functest	healthcheck	00:19	PASS
vmready2	functest	healthcheck	00:16	PASS
singlevm1	functest	healthcheck	00:41	PASS
singlevm2	functest	healthcheck	00:36	PASS
vping_ssh	functest	healthcheck	00:46	PASS
vping_userdata	functest	healthcheck	00:41	PASS
cinder_test	functest	healthcheck	01:18	PASS
api_check	functest	healthcheck	10:33	PASS
snaps_health_check	functest	healthcheck	00:44	PASS
odl	functest	healthcheck	00:00	SKIP
+----------------------------+------------------+---------------------+------------------+----------------+

NOTE: the duration is a reference and it might vary depending on your SUT.

Testing smoke suite

Run smoke suite:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 opnfv/functest-smoke:gambia

Results shall be displayed as follows:

+------------------------------------+------------------+---------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+------------------------------------+------------------+---------------+------------------+----------------+
tempest_smoke	functest	smoke	06:13	PASS
neutron-tempest-plugin-api	functest	smoke	09:32	PASS
rally_sanity	functest	smoke	29:34	PASS
rally_jobs	functest	smoke	24:02	PASS
refstack_defcore	functest	smoke	13:07	PASS
patrole	functest	smoke	05:17	PASS
snaps_smoke	functest	smoke	90:13	PASS
neutron_trunk	functest	smoke	00:00	SKIP
networking-bgpvpn	functest	smoke	00:00	SKIP
networking-sfc	functest	smoke	00:00	SKIP
barbican	functest	smoke	05:01	PASS
+------------------------------------+------------------+---------------+------------------+----------------+

Note: if the scenario does not support some tests, they are indicated as SKIP.
See User guide for details.

Testing benchmarking suite

Run benchmarking suite:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 opnfv/functest-benchmarking:gambia

Results shall be displayed as follows:

+-------------------+------------------+----------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-------------------+------------------+----------------------+------------------+----------------+
| vmtp | functest | benchmarking | 18:43 | PASS |
| shaker | functest | benchmarking | 29:45 | PASS |
+-------------------+------------------+----------------------+------------------+----------------+

Note: if the scenario does not support some tests, they are indicated as SKIP.
See User guide for details.

Testing features suite

Run features suite:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 opnfv/functest-features:gambia

Results shall be displayed as follows:

+-----------------------------+------------------------+------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-----------------------------+------------------------+------------------+------------------+----------------+
doctor-notification	doctor	features	00:00	SKIP
bgpvpn	sdnvpn	features	00:00	SKIP
functest-odl-sfc	sfc	features	00:00	SKIP
barometercollectd	barometer	features	00:00	SKIP
fds	fastdatastacks	features	00:00	SKIP
vgpu	functest	features	00:00	SKIP
stor4nfv_os	stor4nfv	features	00:00	SKIP
+-----------------------------+------------------------+------------------+------------------+----------------+

Note: if the scenario does not support some tests, they are indicated as SKIP.
See User guide for details.

Testing components suite

Run components suite:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 opnfv/functest-components:gambia

Results shall be displayed as follows:

+--------------------------+------------------+--------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+--------------------------+------------------+--------------------+------------------+----------------+
tempest_full	functest	components	49:51	PASS
tempest_scenario	functest	components	18:50	PASS
rally_full	functest	components	167:13	PASS
+--------------------------+------------------+--------------------+------------------+----------------+

Testing vnf suite

Run vnf suite:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 opnfv/functest-vnf:gambia

Results shall be displayed as follows:

+----------------------+------------------+--------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+----------------------+------------------+--------------+------------------+----------------+
cloudify	functest	vnf	04:05	PASS
cloudify_ims	functest	vnf	24:07	PASS
heat_ims	functest	vnf	18:15	PASS
vyos_vrouter	functest	vnf	15:48	PASS
juju_epc	functest	vnf	29:38	PASS
+----------------------+------------------+--------------+------------------+----------------+

Functest Dockers for Kubernetes deployment

Docker images are available on the dockerhub:

	opnfv/functest-kubernetes-core

	opnfv/functest-kubernetest-healthcheck

	opnfv/functest-kubernetest-smoke

	opnfv/functest-kubernetest-features

Preparing your environment

cat env:

DEPLOY_SCENARIO=k8s-XXX

Testing healthcheck suite

Run healthcheck suite:

sudo docker run -it --env-file env \
 -v $(pwd)/config:/root/.kube/config \
 opnfv/functest-kubernetes-healthcheck:gambia

A config file in the current dir ‘config’ is also required, which should be
volume mapped to ~/.kube/config inside kubernetes container.

Results shall be displayed as follows:

+-------------------+------------------+---------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-------------------+------------------+---------------------+------------------+----------------+
| k8s_smoke | functest | healthcheck | 02:27 | PASS |
+-------------------+------------------+---------------------+------------------+----------------+

Testing smoke suite

Run smoke suite:

sudo docker run -it --env-file env \
 -v $(pwd)/config:/root/.kube/config \
 opnfv/functest-kubernetes-smoke:gambia

Results shall be displayed as follows:

+-------------------------+------------------+---------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-------------------------+------------------+---------------+------------------+----------------+
| k8s_conformance | functest | smoke | 57:14 | PASS |
+-------------------------+------------------+---------------+------------------+----------------+

Testing features suite

Run features suite:

sudo docker run -it --env-file env \
 -v $(pwd)/config:/root/.kube/config \
 opnfv/functest-kubernetes-features:gambia

Results shall be displayed as follows:

+----------------------+------------------+------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+----------------------+------------------+------------------+------------------+----------------+
| stor4nfv_k8s | stor4nfv | stor4nfv | 00:00 | SKIP |
| clover_k8s | clover | clover | 00:00 | SKIP |
+----------------------+------------------+------------------+------------------+----------------+

Environment variables

Several environement variables may be specified:

	INSTALLER_IP=<Specific IP Address>

	DEPLOY_SCENARIO=<vim>-<controller>-<nfv_feature>-<ha_mode>

	NAMESERVER=XXX # if not 8.8.8.8

	VOLUME_DEVICE_NAME=XXX # if not vdb

	EXTERNAL_NETWORK=XXX # if not first network with router:external=True

	NEW_USER_ROLE=XXX # if not member

INSTALLER_IP is required by Barometer in order to access the installer node and
the deployment.

	The format for the DEPLOY_SCENARIO env variable can be described as follows:

	
	vim: (os|k8s) = OpenStack or Kubernetes

	controller is one of (nosdn | odl)

	nfv_feature is one or more of (ovs | kvm | sfc | bgpvpn | nofeature)

	ha_mode (high availability) is one of (ha | noha)

If several features are pertinent then use the underscore character ‘_’ to
separate each feature (e.g. ovs_kvm). ‘nofeature’ indicates that no OPNFV
feature is deployed.

The list of supported scenarios per release/installer is indicated in the
release note.

NOTE: The scenario name is mainly used to automatically detect
if a test suite is runnable or not (e.g. it will prevent ODL test suite to be
run on ‘nosdn’ scenarios). If not set, Functest will try to run the default
test cases that might not include SDN controller or a specific feature.

NOTE: An HA scenario means that 3 OpenStack controller nodes are
deployed. It does not necessarily mean that the whole system is HA. See
installer release notes for details.

Finally, three additional environment variables can also be passed in
to the Functest Docker Container, using the -e
“<EnvironmentVariable>=<Value>” mechanism. The first two parameters are
only relevant to Jenkins CI invoked testing and should not be used
when performing manual test scenarios:

	INSTALLER_TYPE=(apex|compass|daisy|fuel)

	NODE_NAME=<Test POD Name>

	BUILD_TAG=<Jenkins Build Tag>

where:

	
	<Test POD Name> = Symbolic name of the POD where the tests are run.

	Visible in test results files, which are stored
to the database. This option is only used when
tests are activated under Jenkins CI control.
It indicates the POD/hardware where the test has
been run. If not specified, then the POD name is
defined as “Unknown” by default.
DO NOT USE THIS OPTION IN MANUAL TEST SCENARIOS.

	
	<Jenkins Build tag> = Symbolic name of the Jenkins Build Job.

	Visible in test results files, which are stored
to the database. This option is only set when
tests are activated under Jenkins CI control.
It enables the correlation of test results,
which are independently pushed to the results database
from different Jenkins jobs.
DO NOT USE THIS OPTION IN MANUAL TEST SCENARIOS.

Openstack credentials

OpenStack credentials are mandatory and must be provided to Functest.
When running the command “functest env prepare”, the framework will
automatically look for the Openstack credentials file
“/home/opnfv/functest/conf/env_file” and will exit with
error if it is not present or is empty.

There are 2 ways to provide that file:

	by using a Docker volume with -v option when creating the Docker container.
This is referred to in docker documentation as “Bind Mounting”.
See the usage of this parameter in the following chapter.

	or creating manually the file ‘/home/opnfv/functest/conf/env_file’
inside the running container and pasting the credentials in it. Consult
your installer guide for further details. This is however not
instructed in this document.

In proxified environment you may need to change the credentials file.
There are some tips in chapter: Proxy support

SSL Support

If you need to connect to a server that is TLS-enabled (the auth URL
begins with “https”) and it uses a certificate from a private CA or a
self-signed certificate, then you will need to specify the path to an
appropriate CA certificate to use, to validate the server certificate
with the environment variable OS_CACERT:

echo $OS_CACERT
/etc/ssl/certs/ca.crt

However, this certificate does not exist in the container by default.
It has to be copied manually from the OpenStack deployment. This can be
done in 2 ways:

	Create manually that file and copy the contents from the OpenStack
controller.

	(Recommended) Add the file using a Docker volume when starting the
container:

-v <path_to_your_cert_file>:/etc/ssl/certs/ca.cert

You might need to export OS_CACERT environment variable inside the
credentials file:

export OS_CACERT=/etc/ssl/certs/ca.crt

Certificate verification can be turned off using OS_INSECURE=true. For
example, Fuel uses self-signed cacerts by default, so an pre step would
be:

export OS_INSECURE=true

Logs

By default all the logs are put un /home/opnfv/functest/results/functest.log.
If you want to have more logs in console, you may edit the logging.ini file
manually.
Connect on the docker then edit the file located in
/usr/lib/python2.7/site-packages/xtesting/ci/logging.ini

Change wconsole to console in the desired module to get more traces.

Configuration

You may also directly modify the python code or the configuration file (e.g.
testcases.yaml used to declare test constraints) under
/usr/lib/python2.7/site-packages/xtesting and
/usr/lib/python2.7/site-packages/functest

Tips

Docker

When typing exit in the container prompt, this will cause exiting
the container and probably stopping it. When stopping a running Docker
container all the changes will be lost, there is a keyboard shortcut
to quit the container without stopping it: <CTRL>-P + <CTRL>-Q. To
reconnect to the running container DO NOT use the run command
again (since it will create a new container), use the exec or attach
command instead:

docker ps # <check the container ID from the output>
docker exec -ti <CONTAINER_ID> /bin/bash

There are other useful Docker commands that might be needed to manage possible
issues with the containers.

List the running containers:

docker ps

List all the containers including the stopped ones:

docker ps -a

Start a stopped container named “FunTest”:

docker start FunTest

Attach to a running container named “StrikeTwo”:

docker attach StrikeTwo

It is useful sometimes to remove a container if there are some problems:

docker rm <CONTAINER_ID>

Use the -f option if the container is still running, it will force to
destroy it:

docker rm -f <CONTAINER_ID>

Check the Docker documentation [dockerdocs [https://docs.docker.com/]] for more information.

Checking Openstack and credentials

It is recommended and fairly straightforward to check that Openstack
and credentials are working as expected.

Once the credentials are there inside the container, they should be
sourced before running any Openstack commands:

source /home/opnfv/functest/conf/env_file

After this, try to run any OpenStack command to see if you get any
output, for instance:

openstack user list

This will return a list of the actual users in the OpenStack
deployment. In any other case, check that the credentials are sourced:

env|grep OS_

This command must show a set of environment variables starting with
OS_, for example:

OS_REGION_NAME=RegionOne
OS_USER_DOMAIN_NAME=Default
OS_PROJECT_NAME=admin
OS_AUTH_VERSION=3
OS_IDENTITY_API_VERSION=3
OS_PASSWORD=da54c27ae0d10dfae5297e6f0d6be54ebdb9f58d0f9dfc
OS_AUTH_URL=http://10.1.0.9:5000/v3
OS_USERNAME=admin
OS_TENANT_NAME=admin
OS_ENDPOINT_TYPE=internalURL
OS_INTERFACE=internalURL
OS_NO_CACHE=1
OS_PROJECT_DOMAIN_NAME=Default

If the OpenStack command still does not show anything or complains
about connectivity issues, it could be due to an incorrect url given to
the OS_AUTH_URL environment variable. Check the deployment settings.

Proxy support

If your Jumphost node is operating behind a http proxy, then there are
2 places where some special actions may be needed to make operations
succeed:

	Initial installation of docker engine First, try following the
official Docker documentation for Proxy settings. Some issues were
experienced on CentOS 7 based Jumphost. Some tips are documented
in section: Docker Installation on CentOS behind http proxy
below.

If that is the case, make sure the resolv.conf and the needed
http_proxy and https_proxy environment variables, as well as the
‘no_proxy’ environment variable are set correctly:

Make double sure that the 'no_proxy=...' line in the
'env_file' file is commented out first. Otherwise, the
values set into the 'no_proxy' environment variable below will
be ovewrwritten, each time the command
'source ~/functest/conf/env_file' is issued.

cd ~/functest/conf/
sed -i 's/export no_proxy/#export no_proxy/' env_file
source ./env_file

Next calculate some IP addresses for which http_proxy
usage should be excluded:

publicURL_IP=$(echo $OS_AUTH_URL | grep -Eo "([0-9]+\.){3}[0-9]+")

adminURL_IP=$(openstack catalog show identity | \
grep adminURL | grep -Eo "([0-9]+\.){3}[0-9]+")

export http_proxy="<your http proxy settings>"
export https_proxy="<your https proxy settings>"
export no_proxy="127.0.0.1,localhost,$publicURL_IP,$adminURL_IP"

Ensure that "git" uses the http_proxy
This may be needed if your firewall forbids SSL based git fetch
git config --global http.sslVerify True
git config --global http.proxy <Your http proxy settings>

For example, try to use the nc command from inside the functest
docker container:

nc -v opnfv.org 80
Connection to opnfv.org 80 port [tcp/http] succeeded!

nc -v opnfv.org 443
Connection to opnfv.org 443 port [tcp/https] succeeded!

Note: In a Jumphost node based on the CentOS family OS, the nc
commands might not work. You can use the curl command instead.

curl http://www.opnfv.org:80

<HTML><HEAD><meta http-equiv=”content-type”
.
.
</BODY></HTML>

curl https://www.opnfv.org:443

<HTML><HEAD><meta http-equiv=”content-type”
.
.
</BODY></HTML>

(Ignore the content. If command returns a valid HTML page, it proves
the connection.)

Docker Installation on CentOS behind http proxy

This section is applicable for CentOS family OS on Jumphost which
itself is behind a proxy server. In that case, the instructions below
should be followed before installing the docker engine:

1) # Make a directory '/etc/systemd/system/docker.service.d'
 # if it does not exist
 sudo mkdir /etc/systemd/system/docker.service.d

2) # Create a file called 'env.conf' in that directory with
 # the following contents:
 [Service]
 EnvironmentFile=-/etc/sysconfig/docker

3) # Set up a file called 'docker' in directory '/etc/sysconfig'
 # with the following contents:
 HTTP_PROXY="<Your http proxy settings>"
 HTTPS_PROXY="<Your https proxy settings>"
 http_proxy="${HTTP_PROXY}"
 https_proxy="${HTTPS_PROXY}"

4) # Reload the daemon
 systemctl daemon-reload

5) # Sanity check - check the following docker settings:
 systemctl show docker | grep -i env

 Expected result:

 EnvironmentFile=/etc/sysconfig/docker (ignore_errors=yes)
 DropInPaths=/etc/systemd/system/docker.service.d/env.conf

Now follow the instructions in [Install Docker on CentOS [https://docs.docker.com/engine/installation/linux/centos/]] to download
and install the docker-engine. The instructions conclude with a
“test pull” of a sample “Hello World” docker container. This should now
work with the above pre-requisite actions.

Integration in CI

In CI we use the Docker images and execute the appropriate commands within the
container from Jenkins.

	4 steps have been defined::

	
	functest-cleanup: clean existing functest dockers on the jumphost

	functest-daily: run dockers opnfv/functest-* (healthcheck, smoke, features,
vnf)

	functest-store-results: push logs to artifacts

See [1] [https://github.com/opnfv/releng/blob/master/jjb/functest/functest-daily-jobs.yaml] for details.

Functest User Guide

	Introduction

	Overview of the Functest suites

	VIM (Virtualized Infrastructure Manager)
	Healthcheck tests

	vPing_ssh

	vPing_userdata

	Tempest

	Rally bench test suites

	snaps_smoke

	SDN Controllers
	OpenDaylight

	Features

	VNF
	cloudify_ims

	heat_ims

	vyos-vrouter

	juju_epc

	Kubernetes (K8s)

	Test results
	Manual testing

	Automated testing

	Test reporting

	Troubleshooting
	VIM

	Controllers

	Features

	VNF

References

[2] [http://docs.openstack.org/developer/tempest/overview.html]: OpenStack Tempest documentation

[3] [https://rally.readthedocs.org/en/latest/index.html]: Rally documentation

[4] [http://events.linuxfoundation.org/sites/events/files/slides/Functest%20in%20Depth_0.pdf]: Functest in depth (Danube)

[5] [https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater/blob/master/openstack-blueprint.yaml]: Clearwater vIMS blueprint

[6] [https://en.wikipedia.org/wiki/Security_Content_Automation_Protocol]: Security Content Automation Protocol

[7] [https://github.com/OpenSCAP/openscap]: OpenSCAP web site

[8] [https://github.com/openstack/refstack-client]: Refstack client

[9] [https://github.com/openstack/defcore]: Defcore

[10] [https://github.com/openstack/interop/blob/master/2016.08/procedure.rst]: OpenStack interoperability procedure

[11] [http://robotframework.org/]: Robot Framework web site

[13] [https://wiki.opnfv.org/display/PROJ/SNAPS-OO]: SNAPS wiki

[14] [https://github.com/oolorg/opnfv-functest-vrouter]: vRouter

[15] [https://aptira.com/testing-openstack-tempest-part-1/]: Testing OpenStack Tempest part 1

[16] [http://testresults.opnfv.org/test/]: OPNFV Test API

OPNFV main site [http://www.opnfv.org]: OPNFV official web site

Functest page [https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing]: Functest wiki page

IRC support chan: #opnfv-functest

Introduction

The goal of this document is to describe the OPNFV Functest test cases and to
provide a procedure to execute them.

IMPORTANT: It is assumed here that Functest has been properly deployed
following the installation guide procedure Functest Installation Guide.

Overview of the Functest suites

Functest is the OPNFV project primarily targeting functional testing.
In the Continuous Integration pipeline, it is launched after an OPNFV fresh
installation to validate and verify the basic functions of the
infrastructure.

	The current list of test suites can be distributed over 5 main domains:

	
	VIM (Virtualised Infrastructure Manager)

	Controllers (i.e. SDN Controllers)

	Features

	VNF (Virtual Network Functions)

	Kubernetes

Functest test suites are also distributed in the OPNFV testing categories:
healthcheck, smoke, features, components, performance, VNF, Stress tests.

All the Healthcheck and smoke tests of a given scenario must be succesful to
validate the scenario for the release.

	Domain

	Tier

	Test case

	Comments

	VIM

	healthcheck

	connection
_check

	Check OpenStack connectivity
through SNAPS framework

	api_check

	Check OpenStack API through
SNAPS framework

	snaps
_health
_check

	basic instance creation, check
DHCP

	smoke

	vping_ssh

	NFV “Hello World” using an SSH
connection to a destination VM
over a created floating IP
address on the SUT Public /
External network. Using the SSH
connection a test script is then
copied to the destination
VM and then executed via SSH.
The script will ping another
VM on a specified IP address over
the SUT Private Tenant network

	vping
_userdata

	Uses Ping with given userdata
to test intra-VM connectivity
over the SUT Private Tenant
network. The correct operation
of the NOVA Metadata service is
also verified in this test

	tempest
_smoke

	Generate and run a relevant
Tempest Test Suite in smoke mode.
The generated test set is
dependent on the OpenStack
deployment environment

	rally
_sanity

	Run a subset of the OpenStack
Rally Test Suite in smoke mode

	snaps_smoke

	Run the SNAPS-OO integration
tests

	refstack
_defcore

	Reference RefStack suite
tempest selection for NFV

	patrole

	Patrole is a tempest plugin for
testing and verifying RBAC policy
enforcement, which offers testing
for the following OpenStack
services: Nova, Neutron, Glance,
Cinder and Keystone

	
	neutron
_trunk

	The neutron trunk port testcases
have been introduced and they are
supported by installers :
Apex, Fuel and Compass.

	components

	tempest
_full
_parallel

	Generate and run a full set of
the OpenStack Tempest Test Suite.
See the OpenStack reference test
suite [2] [http://docs.openstack.org/developer/tempest/overview.html]. The generated
test set is dependent on the
OpenStack deployment environment

	rally_full

	Run the OpenStack testing tool
benchmarking OpenStack modules
See the Rally documents [3] [https://rally.readthedocs.org/en/latest/index.html]

	Controllers

	smoke

	odl

	Opendaylight Test suite
Limited test suite to check the
basic neutron (Layer 2)
operations mainly based on
upstream testcases. See below
for details

	Features

	features

	bgpvpn

	Implementation of the OpenStack
bgpvpn API from the SDNVPN
feature project. It allows for
the creation of BGP VPNs.
See SDNVPN User Guide [http://artifacts.opnfv.org/sdnvpn/colorado/docs/userguide/index.html] for
details

	doctor

	Doctor platform, as of Colorado
release, provides the three
features:
* Immediate Notification
* Consistent resource state
awareness for compute host down
* Valid compute host status
given to VM owner
See Doctor User Guide [http://artifacts.opnfv.org/doctor/colorado/userguide/index.html] for
details

	odl-sfc

	SFC testing for odl scenarios
See SFC User Guide [http://artifacts.opnfv.org/sfc/colorado/userguide/index.html] for details

	parser

	Parser is an integration project
which aims to provide
placement/deployment templates
translation for OPNFV platform,
including TOSCA -> HOT, POLICY ->
TOSCA and YANG -> TOSCA. it
deals with a fake vRNC.
See Parser User Guide [http://artifacts.opnfv.org/parser/colorado/docs/userguide/index.html] for
details

	fds

	Test Suite for the OpenDaylight
SDN Controller when the GBP
features are installed. It
integrates some test suites from
upstream using Robot as the test
framework

	VNF

	vnf

	cloudify
_ims

	Example of a real VNF deployment
to show the NFV capabilities of
the platform. The IP Multimedia
Subsytem is a typical Telco test
case, referenced by ETSI.
It provides a fully functional
VoIP System

	vyos
_vrouter

	vRouter testing

	juju_epc

	Validates deployment of a complex
mobility VNF on OPNFV Platform.
Uses Juju for deploying the OAI
EPC and ABot for defining test
scenarios using high-level DSL.
VNF tests reference 3GPP
Technical Specs and are executed
through protocol drivers provided
by ABot.

	Kubernetes

	healthcheck

	k8s_smoke

	Test a running Kubernetes
cluster and ensure it satisfies
minimal functional requirements

	smoke

	k8s_
conformance

	Run a subset of Kubernetes
End-to-End tests, expected to
pass on any Kubernetes cluster

	stor4nfv

	stor4nfv
_k8s

	Run tests necessary to
demonstrate conformance of the
K8s+Stor4NFV deployment

	clover

	clover_k8s

	Test functionality of
K8s+Istio+Clover deployment.

As shown in the above table, Functest is structured into different ‘domains’,
‘tiers’ and ‘test cases’. Each ‘test case’ usually represents an actual
‘Test Suite’ comprised -in turn- of several test cases internally.

Test cases also have an implicit execution order. For example, if the early
‘healthcheck’ Tier testcase fails, or if there are any failures in the ‘smoke’
Tier testcases, there is little point to launch a full testcase execution
round.

In Danube, we merged smoke and sdn controller tiers in smoke tier.

An overview of the Functest Structural Concept is depicted graphically below:

[image: Functest Concepts Structure]

Some of the test cases are developed by Functest team members, whereas others
are integrated from upstream communities or other OPNFV projects. For example,
Tempest [http://docs.openstack.org/developer/tempest/overview.html] is the
OpenStack integration test suite and Functest is in charge of the selection,
integration and automation of those tests that fit suitably to OPNFV.

The Tempest test suite is the default OpenStack smoke test suite but no new
test cases have been created in OPNFV Functest.

The results produced by the tests run from CI are pushed and collected into a
NoSQL database. The goal is to populate the database with results from
different sources and scenarios and to show them on a Functest Dashboard [http://testresults.opnfv.org/]. A
screenshot of a live Functest Dashboard is shown below:

[image: Functest Dashboard]

Basic components (VIM, SDN controllers) are tested through their own suites.
Feature projects also provide their own test suites with different ways of
running their tests.

The notion of domain has been introduced in the description of the test cases
stored in the Database.
This parameters as well as possible tags can be used for the Test case catalog.

vIMS test case was integrated to demonstrate the capability to deploy a
relatively complex NFV scenario on top of the OPNFV infrastructure.

Functest considers OPNFV as a black box. OPNFV offers a lot of potential
combinations (which may change from one version to another):

	3 controllers (OpenDaylight, ONOS, OpenContrail)

	5 installers (Apex, Compass, Daisy, Fuel, Joid)

Most of the tests are runnable by any combination, but some tests might have
restrictions imposed by the utilized installers or due to the available
deployed features. The system uses the environment variables (INSTALLER_TYPE
and DEPLOY_SCENARIO) to automatically determine the valid test cases, for each
given environment.

A convenience Functest CLI utility is also available to simplify setting up the
Functest evironment, management of the OpenStack environment (e.g. resource
clean-up) and for executing tests.
The Functest CLI organised the testcase into logical Tiers, which contain in
turn one or more testcases. The CLI allows execution of a single specified
testcase, all test cases in a specified Tier, or the special case of execution
of ALL testcases. The Functest CLI is introduced in more details in next
section.

 The different test cases are described in the remaining sections of this
document.

VIM (Virtualized Infrastructure Manager)

Healthcheck tests

Since Danube, healthcheck tests have been refactored and rely on SNAPS, an
OPNFV middleware project.

SNAPS stands for “SDN/NFV Application development Platform and Stack”.
SNAPS is an object-oriented OpenStack library packaged with tests that exercise
OpenStack.
More information on SNAPS can be found in [13] [https://wiki.opnfv.org/display/PROJ/SNAPS-OO]

Three tests are declared as healthcheck tests and can be used for gating by the
installer, they cover functionally the tests previously done by healthcheck
test case.

The tests are:

	connection_check

	api_check

	snaps_health_check

Connection_check consists in 9 test cases (test duration < 5s) checking the
connectivity with Glance, Keystone, Neutron, Nova and the external network.

Api_check verifies the retrieval of OpenStack clients: Keystone, Glance,
Neutron and Nova and may perform some simple queries. When the config value of
snaps.use_keystone is True, functest must have access to the cloud’s private
network. This suite consists in 49 tests (test duration < 2 minutes).

Snaps_health_check creates a VM with a single port with an IPv4 address that
is assigned by DHCP and then validates the expected IP with the actual.

The flavors for the SNAPS test cases are able to be configured giving new
metadata values as well as new values for the basic elements of flavor (i.e.
ram, vcpu, disk, ephemeral, swap etc). The snaps.flavor_extra_specs dict in the
config_functest.yaml file could be used for this purpose.

Self-obviously, successful completion of the ‘healthcheck’ testcase is a
necessary pre-requisite for the execution of all other test Tiers.

vPing_ssh

Given the script ping.sh:

#!/bin/sh
ping -c 1 $1 2>&1 >/dev/null
RES=$?
if ["Z$RES" = "Z0"] ; then
 echo 'vPing OK'
else
 echo 'vPing KO'
fi

The goal of this test is to establish an SSH connection using a floating IP
on the Public/External network and verify that 2 instances can talk over a
Private Tenant network:

vPing_ssh test case
+-------------+ +-------------+
	Boot VM1 with IP1	
+------------------->		
Tester		System
	Boot VM2	Under
+------------------->	Test	
	Create floating IP	
+------------------->		
	Assign floating IP	
	to VM2	
+------------------->		
	Establish SSH	
	connection to VM2	
	through floating IP	
+------------------->		
	SCP ping.sh to VM2	
+------------------->		
	VM2 executes	
	ping.sh to VM1	
+------------------->		
	If ping:	
	exit OK	
	else (timeout):	
	exit Failed	
+-------------+ +-------------+

This test can be considered as an “Hello World” example.
It is the first basic use case which must work on any deployment.

vPing_userdata

This test case is similar to vPing_ssh but without the use of Floating IPs
and the Public/External network to transfer the ping script.
Instead, it uses Nova metadata service to pass it to the instance at booting
time.
As vPing_ssh, it checks that 2 instances can talk to
each other on a Private Tenant network:

vPing_userdata test case
+-------------+ +-------------+
	Boot VM1 with IP1	
+-------------------->		
	Boot VM2 with	
	ping.sh as userdata	
	with IP1 as $1.	
+-------------------->		
Tester		System
	VM2 executes ping.sh	Under
	(ping IP1)	Test
+-------------------->		
	Monitor nova	
	console-log VM 2	
	If ping:	
	exit OK	
	else (timeout)	
	exit Failed	
+-------------+ +-------------+

When the second VM boots it will execute the script passed as userdata
automatically. The ping will be detected by periodically capturing the output
in the console-log of the second VM.

Tempest

Tempest [2] [http://docs.openstack.org/developer/tempest/overview.html] is the reference OpenStack Integration test suite.
It is a set of integration tests to be run against a live OpenStack cluster.
Tempest has suites of tests for:

	OpenStack API validation

	Scenarios

	Other specific tests useful in validating an OpenStack deployment

Functest uses Rally [3] [https://rally.readthedocs.org/en/latest/index.html] to run the Tempest suite.
Rally generates automatically the Tempest configuration file tempest.conf.
Before running the actual test cases,
Functest creates the needed resources (user, tenant) and
updates the appropriate parameters into the configuration file.

When the Tempest suite is executed, each test duration is measured and the full
console output is stored to a log file for further analysis.

The Tempest testcases are distributed across three
Tiers:

	Smoke Tier - Test Case ‘tempest_smoke’

	Components Tier - Test case ‘tempest_full’

	Neutron Trunk Port - Test case ‘neutron_trunk’

	OpenStack interop testcases - Test case ‘refstack_defcore’

	Testing and verifying RBAC policy enforcement - Test case ‘patrole’

NOTE: Test case ‘tempest_smoke’ executes a defined set of tempest smoke
tests. Test case ‘tempest_full’ executes all defined Tempest tests.

NOTE: The ‘neutron_trunk’ test set allows to connect a VM to multiple VLAN
separated networks using a single NIC. The feature neutron trunk ports have
been supported by Apex, Fuel and Compass, so the tempest testcases have been
integrated normally.

NOTE: Rally is also used to run Openstack Interop testcases [9] [https://github.com/openstack/defcore], which focus
on testing interoperability between OpenStack clouds.

NOTE: Patrole is a tempest plugin for testing and verifying RBAC policy
enforcement. It runs Tempest-based API tests using specified RBAC roles, thus
allowing deployments to verify that only intended roles have access to those
APIs. Patrole currently offers testing for the following OpenStack services:
Nova, Neutron, Glance, Cinder and Keystone. Currently in functest, only neutron
and glance are tested.

The goal of the Tempest test suite is to check the basic functionalities of the
different OpenStack components on an OPNFV fresh installation, using the
corresponding REST API interfaces.

Rally bench test suites

Rally [3] [https://rally.readthedocs.org/en/latest/index.html] is a benchmarking tool that answers the question:

How does OpenStack work at scale?

The goal of this test suite is to benchmark all the different OpenStack modules
and get significant figures that could help to define Telco Cloud KPIs.

The OPNFV Rally scenarios are based on the collection of the actual Rally
scenarios:

	authenticate

	cinder

	glance

	heat

	keystone

	neutron

	nova

	quotas

A basic SLA (stop test on errors) has been implemented.

The Rally testcases are distributed across two Tiers:

	Smoke Tier - Test Case ‘rally_sanity’

	Components Tier - Test case ‘rally_full’

NOTE: Test case ‘rally_sanity’ executes a limited number of Rally smoke test
cases. Test case ‘rally_full’ executes the full defined set of Rally tests.

snaps_smoke

This test case contains tests that setup and destroy environments with VMs with
and without Floating IPs with a newly created user and project. Set the config
value snaps.use_floating_ips (True|False) to toggle this functionality.
Please note that When the configuration value of snaps.use_keystone is True,
Functest must have access the cloud’s private network.
This suite consists in 120 tests (test duration ~= 50 minutes)

The flavors for the SNAPS test cases are able to be configured giving new
metadata values as well as new values for the basic elements of flavor (i.e.
ram, vcpu, disk, ephemeral, swap etc). The snaps.flavor_extra_specs dict in
the config_functest.yaml file could be used for this purpose.

SDN Controllers

OpenDaylight

The OpenDaylight (ODL) test suite consists of a set of basic tests inherited
from the ODL project using the Robot [11] [http://robotframework.org/] framework.
The suite verifies creation and deletion of networks, subnets and ports with
OpenDaylight and Neutron.

The list of tests can be described as follows:

	Basic Restconf test cases

	Connect to Restconf URL

	Check the HTTP code status

	Neutron Reachability test cases

	Get the complete list of neutron resources (networks, subnets, ports)

	Neutron Network test cases

	Check OpenStack networks

	Check OpenDaylight networks

	Create a new network via OpenStack and check the HTTP status code returned
by Neutron

	Check that the network has also been successfully created in OpenDaylight

	Neutron Subnet test cases

	Check OpenStack subnets

	Check OpenDaylight subnets

	Create a new subnet via OpenStack and check the HTTP status code returned
by Neutron

	Check that the subnet has also been successfully created in OpenDaylight

	Neutron Port test cases

	Check OpenStack Neutron for known ports

	Check OpenDaylight ports

	Create a new port via OpenStack and check the HTTP status code returned by
Neutron

	Check that the new port has also been successfully created in OpenDaylight

	Delete operations

	Delete the port previously created via OpenStack

	Check that the port has been also successfully deleted in OpenDaylight

	Delete previously subnet created via OpenStack

	Check that the subnet has also been successfully deleted in OpenDaylight

	Delete the network created via OpenStack

	Check that the network has also been successfully deleted in OpenDaylight

Note: the checks in OpenDaylight are based on the returned HTTP status
code returned by OpenDaylight.

Features

Functest has been supporting several feature projects since Brahmaputra:

	Test

	Brahma

	Colorado

	Danube

	Euphrates

	Fraser

	barometer

	
	
	X

	X

	X

	bgpvpn

	
	X

	X

	X

	X

	copper

	
	X

	
	
	

	doctor

	X

	X

	X

	X

	X

	domino

	
	X

	X

	X

	

	fds

	
	
	X

	X

	X

	moon

	
	X

	
	
	

	multisite

	
	X

	X

	
	

	netready

	
	
	X

	
	

	odl_sfc

	
	X

	X

	X

	X

	opera

	
	
	X

	
	

	orchestra

	
	
	X

	X

	X

	parser

	
	
	X

	X

	X

	promise

	X

	X

	X

	X

	X

	security_scan

	
	X

	X

	
	

	clover

	
	
	
	
	X

	stor4nfv

	
	
	
	
	X

Please refer to the dedicated feature user guides for details.

VNF

cloudify_ims

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is an
architectural framework for delivering IP multimedia services.

vIMS has been integrated in Functest to demonstrate the capability to deploy a
relatively complex NFV scenario on the OPNFV platform. The deployment of a
complete functional VNF allows the test of most of the essential functions
needed for a NFV platform.

The goal of this test suite consists of:

	deploy a VNF orchestrator (Cloudify)

	deploy a Clearwater vIMS (IP Multimedia Subsystem) VNF from this
orchestrator based on a TOSCA blueprint defined in [5] [https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater/blob/master/openstack-blueprint.yaml]

	run suite of signaling tests on top of this VNF

The Clearwater architecture is described as follows:

[image: vIMS architecture]

heat_ims

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is an
architectural framework for delivering IP multimedia services.

vIMS has been integrated in Functest to demonstrate the capability to deploy a
relatively complex NFV scenario on the OPNFV platform. The deployment of a
complete functional VNF allows the test of most of the essential functions
needed for a NFV platform.

The goal of this test suite consists of:

	deploy a Clearwater vIMS (IP Multimedia Subsystem) VNF using
OpenStack Heat orchestrator based on a HOT template defined in [17] [https://github.com/Metaswitch/clearwater-heat/blob/release-129/clearwater.yaml]

	run suite of signaling tests on top of this VNF

The Clearwater architecture is described as follows:

[image: vIMS architecture]

vyos-vrouter

This test case deals with the deployment and the test of vyos vrouter with
Cloudify orchestrator. The test case can do testing for interchangeability of
BGP Protocol using vyos.

	The Workflow is as follows:

	
	
	Deploy

	Deploy VNF Testing topology by Cloudify using blueprint.

	
	Configuration

	Setting configuration to Target VNF and reference VNF using ssh

	
	Run

	Execution of test command for test item written YAML format file.
Check VNF status and behavior.

	
	Reporting

	Output of report based on result using JSON format.

The vyos-vrouter architecture is described in [14] [https://github.com/oolorg/opnfv-functest-vrouter]

juju_epc

The Evolved Packet Core (EPC) is the main component of the System Architecture
Evolution (SAE) which forms the core of the 3GPP LTE specification.

vEPC has been integrated in Functest to demonstrate the capability to deploy a
complex mobility-specific NFV scenario on the OPNFV platform. The OAI EPC
supports most of the essential functions defined by the 3GPP Technical Specs;
hence the successful execution of functional tests on the OAI EPC provides a
good endorsement of the underlying NFV platform.

This integration also includes ABot, a Test Orchestration system that enables
test scenarios to be defined in high-level DSL. ABot is also deployed as a
VM on the OPNFV platform; and this provides an example of the automation
driver and the Test VNF being both deployed as separate VNFs on the underlying
OPNFV platform.

	The Workflow is as follows:

	
	
	Deploy Orchestrator

	Deploy Juju controller using Bootstrap command.

	
	Deploy VNF

	Deploy ABot orchestrator and OAI EPC as Juju charms.
Configuration of ABot and OAI EPC components is handled through
built-in Juju relations.

	
	Test VNF

	Execution of ABot feature files triggered by Juju actions.
This executes a suite of LTE signalling tests on the OAI EPC.

	
	Reporting

	ABot test results are parsed accordingly and pushed to Functest Db.

Details of the ABot test orchestration tool may be found in [15] [https://www.rebaca.com/abot-test-orchestration-tool/]

Kubernetes (K8s)

Kubernetes testing relies on sets of tests, which are part of the Kubernetes
source tree, such as the Kubernetes End-to-End (e2e) tests [16] [https://github.com/kubernetes/community/blob/master/contributors/devel/e2e-tests.md].

The kubernetes testcases are distributed across various Tiers:

	Healthcheck Tier

	k8s_smoke Test Case: Creates a Guestbook application that contains redis
server, 2 instances of redis slave, frontend application, frontend service
and redis master service and redis slave service. Using frontend service,
the test will write an entry into the guestbook application which will
store the entry into the backend redis database. Application flow MUST
work as expected and the data written MUST be available to read.

	Smoke Tier

	k8s_conformance Test Case: Runs a series of k8s e2e tests expected to
pass on any Kubernetes cluster. It is a subset of tests necessary to
demonstrate conformance grows with each release. Conformance is thus
considered versioned, with backwards compatibility guarantees and are
designed to be run with no cloud provider configured.

Test results

Manual testing

In manual mode test results are displayed in the console and result files
are put in /home/opnfv/functest/results.

If you want additional logs, you may configure the logging.ini under
/usr/lib/python2.7/site-packages/xtesting/ci.

Automated testing

In automated mode, tests are run within split Alpine containers, and test
results are displayed in jenkins logs. The result summary is provided at the
end of each suite and can be described as follow.

Healthcheck suite:

+----------------------------+------------------+---------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+----------------------------+------------------+---------------------+------------------+----------------+
connection_check	functest	healthcheck	00:07	PASS
api_check	functest	healthcheck	07:46	PASS
snaps_health_check	functest	healthcheck	00:36	PASS
+----------------------------+------------------+---------------------+------------------+----------------+

Smoke suite:

+------------------------------+------------------+---------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+------------------------------+------------------+---------------+------------------+----------------+
vping_ssh	functest	smoke	00:57	PASS
vping_userdata	functest	smoke	00:33	PASS
tempest_smoke_serial	functest	smoke	13:22	PASS
rally_sanity	functest	smoke	24:07	PASS
refstack_defcore	functest	smoke	05:21	PASS
patrole	functest	smoke	04:29	PASS
snaps_smoke	functest	smoke	46:54	PASS
odl	functest	smoke	00:00	SKIP
neutron_trunk	functest	smoke	00:00	SKIP
+------------------------------+------------------+---------------+------------------+----------------+

Features suite:

+-----------------------------+------------------------+------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-----------------------------+------------------------+------------------+------------------+----------------+
doctor-notification	doctor	features	00:00	SKIP
bgpvpn	sdnvpn	features	00:00	SKIP
functest-odl-sfc	sfc	features	00:00	SKIP
barometercollectd	barometer	features	00:00	SKIP
fds	fastdatastacks	features	00:00	SKIP
+-----------------------------+------------------------+------------------+------------------+----------------+

Components suite:

+-------------------------------+------------------+--------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-------------------------------+------------------+--------------------+------------------+----------------+
| tempest_full_parallel | functest | components | 48:28 | PASS |
| rally_full | functest | components | 126:02 | PASS |
+-------------------------------+------------------+--------------------+------------------+----------------+

Vnf suite:

+----------------------+------------------+--------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+----------------------+------------------+--------------+------------------+----------------+
cloudify_ims	functest	vnf	28:15	PASS
vyos_vrouter	functest	vnf	17:59	PASS
juju_epc	functest	vnf	46:44	PASS
+----------------------+------------------+--------------+------------------+----------------+

Parser testcase:

+-----------------------+-----------------+------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-----------------------+-----------------+------------------+------------------+----------------+
| parser-basics | parser | features | 00:00 | SKIP |
+-----------------------+-----------------+------------------+------------------+----------------+

Functest Kubernetes test result:

+--------------------------------------+--+
| ENV VAR | VALUE |
+--------------------------------------+--+
INSTALLER_TYPE	compass
DEPLOY_SCENARIO	k8-nosdn-nofeature-ha
BUILD_TAG	jenkins-functest-compass-baremetal-daily-master-75
CI_LOOP	daily
+--------------------------------------+--+

Kubernetes healthcheck suite:

+-------------------+------------------+---------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-------------------+------------------+---------------------+------------------+----------------+
| k8s_smoke | functest | healthcheck | 01:54 | PASS |
+-------------------+------------------+---------------------+------------------+----------------+

Kubernetes smoke suite:

+-------------------------+------------------+---------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+-------------------------+------------------+---------------+------------------+----------------+
| k8s_conformance | functest | smoke | 57:47 | PASS |
+-------------------------+------------------+---------------+------------------+----------------+

Kubernetes features suite:

+----------------------+------------------+------------------+------------------+----------------+
| TEST CASE | PROJECT | TIER | DURATION | RESULT |
+----------------------+------------------+------------------+------------------+----------------+
| stor4nfv_k8s | stor4nfv | stor4nfv | 00:00 | SKIP |
| clover_k8s | clover | clover | 00:00 | SKIP |
+----------------------+------------------+------------------+------------------+----------------+

Results are automatically pushed to the test results database, some additional
result files are pushed to OPNFV artifact web sites.

Based on the results stored in the result database, a Functest reporting [http://testresults.opnfv.org/reporting/master/functest/status-apex.html]
portal is also automatically updated. This portal provides information on the
overall status per scenario and per installer

Test reporting

An automatic reporting page has been created in order to provide a consistent
view of the Functest tests on the different scenarios.

In this page, each scenario is evaluated according to test criteria.

The results are collected from the centralized database every day and, per
scenario. A score is calculated based on the results from the last 10 days.
This score is the addition of single test scores. Each test case has a success
criteria reflected in the criteria field from the results.

As an illustration, let’s consider the scenario
os-odl_l2-nofeature-ha scenario, the scenario scoring is the addition of the
scores of all the runnable tests from the categories (tiers, healthcheck, smoke
and features) corresponding to this scenario.

	Test

	Apex

	Compass

	Fuel

	Joid

	vPing_ssh

	X

	X

	X

	X

	vPing_userdata

	X

	X

	X

	X

	tempest_smoke

	X

	X

	X

	X

	rally_sanity

	X

	X

	X

	X

	odl

	X

	X

	X

	X

	promise

	
	
	X

	X

	doctor

	X

	
	X

	

	security_scan

	X

	
	
	

	parser

	
	
	X

	

	copper

	X

	
	
	X

src: os-odl_l2-nofeature-ha Colorado (see release note for the last matrix
version)

All the testcases (X) listed in the table are runnable on os-odl_l2-nofeature
scenarios.
Please note that other test cases (e.g. sfc_odl, bgpvpn) need ODL configuration
addons and, as a consequence, specific scenario.
There are not considered as runnable on the generic odl_l2 scenario.

If no result is available or if all the results are failed, the test case get 0
point.
If it was successful at least once but not anymore during the 4 runs, the case
get 1 point (it worked once).
If at least 3 of the last 4 runs were successful, the case get 2 points.
If the last 4 runs of the test are successful, the test get 3 points.

In the example above, the target score for fuel/os-odl_l2-nofeature-ha is
3 x 8 = 24 points and for compass it is 3 x 5 = 15 points .

The scenario is validated per installer when we got 3 points for all individual
test cases (e.g 24/24 for fuel, 15/15 for compass).

Please note that complex or long duration tests are not considered yet for the
scoring. In fact the success criteria are not always easy to define and may
require specific hardware configuration.

Please also note that all the test cases have the same “weight” for the score
calculation whatever the complexity of the test case. Concretely a vping has
the same weight than the 200 tempest tests.
Moreover some installers support more features than others. The more cases your
scenario is dealing with, the most difficult to rich a good scoring.

Therefore the scoring provides 3 types of indicators:

	the richness of the scenario: if the target scoring is high, it means that
the scenario includes lots of features

	the maturity: if the percentage (scoring/target scoring * 100) is high, it
means that all the tests are PASS

	the stability: as the number of iteration is included in the calculation,
the pecentage can be high only if the scenario is run regularly (at least
more than 4 iterations over the last 10 days in CI)

In any case, the scoring is used to give feedback to the other projects and
does not represent an absolute value of the scenario.

See reporting page [http://testresults.opnfv.org/reporting/] for details. For the status, click on the version,
Functest then the Status menu.

[image: Functest reporting portal Fuel status page]

Troubleshooting

This section gives some guidelines about how to troubleshoot the test cases
owned by Functest.

IMPORTANT: As in the previous section, the steps defined below must be
executed inside the Functest Docker container and after sourcing the OpenStack
credentials:

. $creds

or:

source /home/opnfv/functest/conf/env_file

VIM

This section covers the test cases related to the VIM (healthcheck, vping_ssh,
vping_userdata, tempest_smoke, tempest_full, rally_sanity, rally_full).

vPing common

For both vPing test cases (vPing_ssh, and vPing_userdata), the first
steps are similar:

	Create Glance image

	Create Network

	Create Security Group

	Create Instances

After these actions, the test cases differ and will be explained in their
respective section.

These test cases can be run inside the container, using new Functest CLI as
follows:

$ run_tests -t vping_ssh
$ run_tests -t vping_userdata

The Functest CLI is designed to route a call to the corresponding internal
python scripts, located in paths:

/usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/vping/vping_ssh.py
/usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/vping/vping_userdata.py

Notes:

	There is one difference, between the Functest CLI based test case
execution compared to the earlier used Bash shell script, which is
relevant to point out in troubleshooting scenarios:

The Functest CLI does not yet support the option to suppress
clean-up of the generated OpenStack resources, following the execution
of a test case.

Explanation: After finishing the test execution, the corresponding
script will remove, by default, all created resources in OpenStack
(image, instances, network and security group). When troubleshooting,
it is advisable sometimes to keep those resources in case the test
fails and a manual testing is needed.

It is actually still possible to invoke test execution, with suppression
of OpenStack resource cleanup, however this requires invocation of a
specific Python script: ‘run_tests’.
The OPNFV Functest Developer Guide [http://artifacts.opnfv.org/functest/docs/testing_developer_devguide/index.html#] provides guidance on the use of that
Python script in such troubleshooting cases.

Some of the common errors that can appear in this test case are:

vPing_ssh- ERROR - There has been a problem when creating the neutron network....

This means that there has been some problems with Neutron, even before creating
the instances. Try to create manually a Neutron network and a Subnet to see if
that works. The debug messages will also help to see when it failed (subnet and
router creation). Example of Neutron commands (using 10.6.0.0/24 range for
example):

neutron net-create net-test
neutron subnet-create --name subnet-test --allocation-pool start=10.6.0.2,end=10.6.0.100 \
--gateway 10.6.0.254 net-test 10.6.0.0/24
neutron router-create test_router
neutron router-interface-add <ROUTER_ID> test_subnet
neutron router-gateway-set <ROUTER_ID> <EXT_NET_NAME>

Another related error can occur while creating the Security Groups for the
instances:

vPing_ssh- ERROR - Failed to create the security group...

In this case, proceed to create it manually. These are some hints:

neutron security-group-create sg-test
neutron security-group-rule-create sg-test --direction ingress --protocol icmp \
--remote-ip-prefix 0.0.0.0/0
neutron security-group-rule-create sg-test --direction ingress --ethertype IPv4 \
--protocol tcp --port-range-min 80 --port-range-max 80 --remote-ip-prefix 0.0.0.0/0
neutron security-group-rule-create sg-test --direction egress --ethertype IPv4 \
--protocol tcp --port-range-min 80 --port-range-max 80 --remote-ip-prefix 0.0.0.0/0

The next step is to create the instances. The image used is located in
/home/opnfv/functest/data/cirros-0.4.0-x86_64-disk.img and a Glance image is
created with the name functest-vping. If booting the instances fails (i.e.
the status is not ACTIVE), you can check why it failed by doing:

nova list
nova show <INSTANCE_ID>

It might show some messages about the booting failure. To try that manually:

nova boot --flavor m1.small --image functest-vping --nic net-id=<NET_ID> nova-test

This will spawn a VM using the network created previously manually.
In all the OPNFV tested scenarios from CI, it never has been a problem with the
previous actions. Further possible problems are explained in the following
sections.

vPing_SSH

This test case creates a floating IP on the external network and assigns it to
the second instance opnfv-vping-2. The purpose of this is to establish
a SSH connection to that instance and SCP a script that will ping the first
instance. This script is located in the repository under
/usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/vping/ping.sh
and takes an IP as a parameter. When the SCP is completed, the test will do a
SSH call to that script inside the second instance. Some problems can happen
here:

vPing_ssh- ERROR - Cannot establish connection to IP xxx.xxx.xxx.xxx. Aborting

If this is displayed, stop the test or wait for it to finish, if you have used
the special method of test invocation with specific supression of OpenStack
resource clean-up, as explained earler. It means that the Container can not
reach the Public/External IP assigned to the instance opnfv-vping-2. There
are many possible reasons, and they really depend on the chosen scenario. For
most of the ODL-L3 and ONOS scenarios this has been noticed and it is a known
limitation.

First, make sure that the instance opnfv-vping-2 succeeded to get an IP
from the DHCP agent. It can be checked by doing:

nova console-log opnfv-vping-2

If the message Sending discover and No lease, failing is shown, it probably
means that the Neutron dhcp-agent failed to assign an IP or even that it was
not responding. At this point it does not make sense to try to ping the
floating IP.

If the instance got an IP properly, try to ping manually the VM from the
container:

nova list
<grab the public IP>
ping <public IP>

If the ping does not return anything, try to ping from the Host where the
Docker container is running. If that solves the problem, check the iptable
rules because there might be some rules rejecting ICMP or TCP traffic
coming/going from/to the container.

At this point, if the ping does not work either, try to reproduce the test
manually with the steps described above in the vPing common section with the
addition:

neutron floatingip-create <EXT_NET_NAME>
nova floating-ip-associate nova-test <FLOATING_IP>

Further troubleshooting is out of scope of this document, as it might be due to
problems with the SDN controller. Contact the installer team members or send an
email to the corresponding OPNFV mailing list for more information.

vPing_userdata

This test case does not create any floating IP neither establishes an SSH
connection. Instead, it uses nova-metadata service when creating an instance
to pass the same script as before (ping.sh) but as 1-line text. This script
will be executed automatically when the second instance opnfv-vping-2 is
booted.

The only known problem here for this test to fail is mainly the lack of support
of cloud-init (nova-metadata service). Check the console of the instance:

nova console-log opnfv-vping-2

If this text or similar is shown:

checking http://169.254.169.254/2009-04-04/instance-id
failed 1/20: up 1.13. request failed
failed 2/20: up 13.18. request failed
failed 3/20: up 25.20. request failed
failed 4/20: up 37.23. request failed
failed 5/20: up 49.25. request failed
failed 6/20: up 61.27. request failed
failed 7/20: up 73.29. request failed
failed 8/20: up 85.32. request failed
failed 9/20: up 97.34. request failed
failed 10/20: up 109.36. request failed
failed 11/20: up 121.38. request failed
failed 12/20: up 133.40. request failed
failed 13/20: up 145.43. request failed
failed 14/20: up 157.45. request failed
failed 15/20: up 169.48. request failed
failed 16/20: up 181.50. request failed
failed 17/20: up 193.52. request failed
failed 18/20: up 205.54. request failed
failed 19/20: up 217.56. request failed
failed 20/20: up 229.58. request failed
failed to read iid from metadata. tried 20

it means that the instance failed to read from the metadata service. Contact
the Functest or installer teams for more information.

Tempest

In the upstream OpenStack CI all the Tempest test cases are supposed to pass.
If some test cases fail in an OPNFV deployment, the reason is very probably one
of the following

	Error

	Details

	Resources required for
testcase execution are
missing

	Such resources could be e.g. an external
network and access to the management subnet
(adminURL) from the Functest docker container.

	OpenStack components or
services are missing or
not configured properly

	Check running services in the controller and
compute nodes (e.g. with “systemctl” or
“service” commands).
Configuration parameters can be verified from
the related .conf files located under
‘/etc/<component>’ directories.

	Some resources required
for execution test cases
are missing

	The tempest.conf file, automatically generated
by Rally in Functest, does not contain all the
needed parameters or some parameters are not
set properly.
The tempest.conf file is located in directory
‘root/.rally/verification/verifier-<UUID>
/for-deployment-<UUID>’
in the Functest Docker container. Use the
“rally deployment list” command in order to
check the UUID of the current deployment.

When some Tempest test case fails, captured traceback and possibly also the
related REST API requests/responses are output to the console. More detailed
debug information can be found from tempest.log file stored into related Rally
deployment folder.

Functest offers a possibility to test a customized list of Tempest test cases.
To enable that, add a new entry in docker/components/testcases.yaml on the
“components” container with the following content:

-
 case_name: tempest_custom
 project_name: functest
 criteria: 100
 blocking: false
 description: >-
 The test case allows running a customized list of tempest
 test cases
 dependencies:
 installer: ''
 scenario: ''
 run:
 module: 'functest.opnfv_tests.openstack.tempest.tempest'
 class: 'TempestCustom'

Also, a list of the Tempest test cases must be provided to the container or
modify the existing one in
/usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/tempest/custom_tests/test_list.txt

Example of custom list of tests ‘my-custom-tempest-tests.txt’:

tempest.scenario.test_server_basic_ops.TestServerBasicOps.test_server_basic_ops[compute,id-7fff3fb3-91d8-4fd0-bd7d-0204f1f180ba,network,smoke]
tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_network_basic_ops[compute,id-f323b3ba-82f8-4db7-8ea6-6a895869ec49,network,smoke]

This is an example of running a customized list of Tempest tests in Functest:

sudo docker run --env-file env \
 -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
 -v $(pwd)/images:/home/opnfv/functest/images \
 -v $(pwd)/my-custom-testcases.yaml:/usr/lib/python2.7/site-packages/functest/ci/testcases.yaml \
 -v $(pwd)/my-custom-tempest-tests.txt:/usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/tempest/custom_tests/test_list.txt \
 opnfv/functest-components run_tests -t tempest_custom

Rally

The same error causes which were mentioned above for Tempest test cases, may
also lead to errors in Rally as well.

	Possible scenarios are:

	
	authenticate

	glance

	cinder

	heat

	keystone

	neutron

	nova

	quotas

	vm

To know more about what those scenarios are doing, they are defined in
directory:
/usr/lib/python2.7/site-packages/functest/opnfv_tests/openstack/rally/scenario
For more info about Rally scenario definition please refer to the Rally
official documentation. [3] [https://rally.readthedocs.org/en/latest/index.html]

To check any possible problems with Rally, the logs are stored under
/home/opnfv/functest/results/rally/ in the Functest Docker container.

Controllers

Opendaylight

If the Basic Restconf test suite fails, check that the ODL controller is
reachable and its Restconf module has been installed.

If the Neutron Reachability test fails, verify that the modules
implementing Neutron requirements have been properly installed.

If any of the other test cases fails, check that Neutron and ODL have
been correctly configured to work together. Check Neutron configuration
files, accounts, IP addresses etc.).

Features

Please refer to the dedicated feature user guides for details.

VNF

cloudify_ims

vIMS deployment may fail for several reasons, the most frequent ones are
described in the following table:

	Error

	Comments

	Keystone admin API not reachable

	Impossible to create vIMS user and
tenant

	Impossible to retrieve admin role
id

	Impossible to create vIMS user and
tenant

	Error when uploading image from
OpenStack to glance

	impossible to deploy VNF

	Cinder quota cannot be updated

	Default quotas not sufficient, they
are adapted in the script

	Impossible to create a volume

	VNF cannot be deployed

	SSH connection issue between the
Test Docker container and the VM

	if vPing test fails, vIMS test will
fail…

	No Internet access from the VM

	the VMs of the VNF must have an
external access to Internet

	No access to OpenStack API from
the VM

	Orchestrator can be installed but
the vIMS VNF installation fails

Please note that this test case requires resources (8 VM (2Go) + 1 VM (4Go)),
it is there fore not recommended to run it on a light configuration.

Functest Developer Guide

Introduction

Functest is a project dealing with functional testing.
The project produces its own internal test cases but can also be considered
as a framework to support feature and VNF onboarding project testing.

Therefore there are many ways to contribute to Functest. You can:

	Develop new internal test cases

	Integrate the tests from your feature project

	Develop the framework to ease the integration of external test cases

Additional tasks involving Functest but addressing all the test projects
may also be mentioned:

	The API / Test collection framework

	The dashboards

	The automatic reporting portals

	The testcase catalog

This document describes how, as a developer, you may interact with the
Functest project. The first section details the main working areas of
the project. The Second part is a list of “How to” to help you to join
the Functest family whatever your field of interest is.

Functest developer areas

Functest High level architecture

Functest is a project delivering test containers dedicated to OPNFV.
It includes the tools, the scripts and the test scenarios.
In Euphrates Alpine containers have been introduced in order to lighten the
container and manage testing slicing. The new containers are created according
to the different tiers:

	functest-core: https://hub.docker.com/r/opnfv/functest-core/

	functest-healthcheck: https://hub.docker.com/r/opnfv/functest-healthcheck/

	functest-smoke: https://hub.docker.com/r/opnfv/functest-smoke/

	functest-features: https://hub.docker.com/r/opnfv/functest-features/

	functest-components: https://hub.docker.com/r/opnfv/functest-components/

	functest-vnf: https://hub.docker.com/r/opnfv/functest-vnf/

	functest-restapi: https://hub.docker.com/r/opnfv/functest-restapi/

Standalone functest dockers are maintained for Euphrates but Alpine containers
are recommended.

Functest can be described as follow:

+----------------------+
| |
| +--------------+ | +-------------------+
			Public	
	Tools	+------------------+ OPNFV		
	Scripts			System Under Test
	Scenarios			
+--------------+	+-------------------+			
Functest Docker				
+----------------------+

Functest internal test cases

The internal test cases in Euphrates are:

	api_check

	connection_check

	snaps_health_check

	vping_ssh

	vping_userdata

	odl

	rally_full

	rally_sanity

	tempest_smoke

	tempest_full

	cloudify_ims

By internal, we mean that this particular test cases have been developed and/or
integrated by functest contributors and the associated code is hosted in the
Functest repository.
An internal case can be fully developed or a simple integration of
upstream suites (e.g. Tempest/Rally developed in OpenStack, or odl suites are
just integrated in Functest).

The structure of this repository is detailed in [1].
The main internal test cases are in the opnfv_tests subfolder of the
repository, the internal test cases can be grouped by domain:

	sdn: odl, odl_fds

	openstack: api_check, connection_check, snaps_health_check, vping_ssh,
vping_userdata, tempest_*, rally_*

	vnf: cloudify_ims

If you want to create a new test case you will have to create a new folder
under the testcases directory (See next section for details).

Functest external test cases

The external test cases are inherited from other OPNFV projects, especially the
feature projects.

The external test cases are:

	barometer

	bgpvpn

	doctor

	domino

	fds

	promise

	refstack_defcore

	snaps_smoke

	functest-odl-sfc

	orchestra_clearwaterims

	orchestra_openims

	vyos_vrouter

	juju_vepc

External test cases integrated in previous versions but not released in
Euphrates:

	copper

	moon

	netready

	security_scan

The code to run these test cases is hosted in the repository of the project.
Please note that orchestra test cases are hosted in Functest repository and not
in orchestra repository. Vyos_vrouter and juju_vepc code is also hosted in
functest as there are no dedicated projects.

Functest framework

Functest is a framework.

Historically Functest is released as a docker file, including tools, scripts
and a CLI to prepare the environment and run tests.
It simplifies the integration of external test suites in CI pipeline and
provide commodity tools to collect and display results.

Since Colorado, test categories also known as tiers have been created to
group similar tests, provide consistent sub-lists and at the end optimize
test duration for CI (see How To section).

The definition of the tiers has been agreed by the testing working group.

	The tiers are:

	
	healthcheck

	smoke

	features

	components

	vnf

Functest abstraction classes

In order to harmonize test integration, abstraction classes have been
introduced:

	testcase: base for any test case

	unit: run unit tests as test case

	feature: abstraction for feature project

	vnf: abstraction for vnf onboarding

The goal is to unify the way to run tests in Functest.

Feature, unit and vnf_base inherit from testcase:

 +--+
 | |
 | TestCase |
 | |
 | - init() |
 | - run() |
 | - push_to_db() |
 | - is_successful() |
 | |
 +--+
 | | | |
 V V V V
+--------------------+ +---------+ +------------------------+ +-----------------+
feature		unit		vnf		robotframework
				- prepare()		
- execute()				- deploy_orchestrator()		
BashFeature class				- deploy_vnf()		
				- test_vnf()		
				- clean()		
+--------------------+ +---------+ +------------------------+ +-----------------+

Functest util classes

In order to simplify the creation of test cases, Functest develops also some
functions that are used by internal test cases.
Several features are supported such as logger, configuration management and
Openstack capabilities (tacker,..).
These functions can be found under <repo>/functest/utils and can be described
as follows:

functest/utils/
|-- config.py
|-- constants.py
|-- decorators.py
|-- env.py
|-- functest_utils.py
|-- openstack_tacker.py
`-- openstack_utils.py

It is recommended to use the SNAPS-OO library for deploying OpenStack
instances. SNAPS [4] is an OPNFV project providing OpenStack utils.

TestAPI

Functest is using the Test collection framework and the TestAPI developed by
the OPNFV community. See [5] for details.

Reporting

A web page is automatically generated every day to display the status based on
jinja2 templates [3].

Dashboard

Additional dashboarding is managed at the testing group level, see [6] for
details.

How TOs

See How to section on Functest wiki [7]

References

[1]: http://artifacts.opnfv.org/functest/docs/configguide/index.html Functest configuration guide

[2]: http://artifacts.opnfv.org/functest/docs/userguide/index.html functest user guide

[3]: https://github.com/opnfv/releng-testresults/tree/master/reporting

[4]: https://git.opnfv.org/snaps/

[5]: https://wiki.opnfv.org/display/functest/2017+Beijing?preview=%2F11699623%2F11700523%2FTestAPI+-+test+results+collection+service.pptx

[6]: https://opnfv.biterg.io/goto/283dba93ca18e95964f852c63af1d1ba

[7]: https://wiki.opnfv.org/pages/viewpage.action?pageId=7768932

IRC support chan: #opnfv-functest

Functest Release Notes

	OPNFV gambia release note for Functest
	Abstract

	OPNFV gambia Release
	OpenStack

	Kubernetes

	Release Data

	Deliverables
	Software

	Documents

	Version change
	New test cases

	Key changes

	Key benefits

	Code quality

	Useful links

Build date: Apr 11, 2019

OPNFV gambia release note for Functest

Abstract

This document contains the release notes of the Functest project.

OPNFV gambia Release

Functest deals with functional testing of the OPNFV solution.
It includes test cases developed within the project, test cases developed in
other OPNFV projects and it also integrates test cases from other upstream
communities.

OpenStack

The internal test cases are:

	connection_check

	tenantnetwork1

	tenantnetwork2

	vmready1

	vmready2

	singlevm1

	singlevm2

	vping_ssh

	vping_userdata

	cinder_test

	api_check

	snaps_health_check

	odl

	tempest_smoke

	neutron-tempest-plugin-api

	rally_sanity

	refstack_defcore

	patrole

	snaps_smoke

	neutron_trunk

	networking-bgpvpn

	networking-sfc

	barbican

	tempest_full

	tempest_scenario

	rally_full

	cloudify

	cloudify_ims

	heat_ims

	vyos_vrouter

	juju_epc

	vgpu

The OPNFV projects integrated into Functest framework for automation are:

	doctor

	bgpvpn

	odl-sfc

	barometer

	fds

	stor4nfv_os

Kubernetes

The internal test cases are:

	k8s_smoke

	k8s_conformance

The OPNFV projects integrated into Functest framework for automation are:

	stor4nfv

	clover

Release Data

	Project

	functest

	Repository branch

	stable/gambia

Deliverables

Software

Functest Docker images (OpenStack):

	https://hub.docker.com/r/opnfv/functest-healthcheck

	https://hub.docker.com/r/opnfv/functest-smoke

	https://hub.docker.com/r/opnfv/functest-benchmarking

	https://hub.docker.com/r/opnfv/functest-features

	https://hub.docker.com/r/opnfv/functest-components

	https://hub.docker.com/r/opnfv/functest-vnf

Functest Docker images (Kubernetes):

	https://hub.docker.com/r/opnfv/functest-kubernetes-healthcheck

	https://hub.docker.com/r/opnfv/functest-kubernetes-smoke

	https://hub.docker.com/r/opnfv/functest-kubernetes-features

Docker tag for gambia: gambia

Documents

	Functests Guides: https://functest.readthedocs.io/en/stable-gambia/

	API Docs: https://functest-api.readthedocs.io/en/stable-gambia/

Version change

New test cases

	tenantnetwork1

	tenantnetwork2

	vmready1

	vmready2

	singlevm1

	singlevm2

	cinder_test

	neutron-tempest-plugin-api

	rally_jobs

	networking-bgpvpn

	networking-sfc

	barbican

	vmtp

	shaker

	tempest_scenario

	cloudify

	heat_ims

	vgpu

Key changes

	update test cases and containers to OpenStack Queens [https://github.com/openstack/requirements/blob/stable/queens/upper-constraints.txt] and to
Kubernetes v1.11.2 [https://github.com/kubernetes/kubernetes/tree/v1.11.2]

	define new scenarios to ease writing testcases vs OpenStack

	isolate all resources created in different tenants

	fully remove all OPNFV logics

	publish new Jenkins jobs

	support VIO (VMware Integrated OpenStack) and arm64 for Kubernetes

	reduce Functest Kubernetes image sizes

	add tempest_full and tempest_scenario in all daily jobs

	include benchmarking tools such as Vmtp ans Shaker

	increase functional scope by adding bgpvpn and sfc tempest plugins

Key benefits

	the enduser can easily build its own toolchains by loading our Jenkins jobs

	all developpers can easily verify their changes before merge

	our testcases may be run vs VIM in production

	all testcases can run in parallel to decrease the overall duration

	Functest includes most of the OpenStack gate jobs

Code quality

	pylint: ~9.5/10

	code coverage: ~70%

Useful links

	wiki project page: https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing

	Functest git repository: https://github.com/opnfv/functest

	Functest CI dashboard: https://build.opnfv.org/ci/view/functest/

	JIRA dashboard: https://jira.opnfv.org/secure/Dashboard.jspa?selectPageId=10611

	Functest IRC channel: #opnfv-functest

	Reporting page: http://testresults.opnfv.org/reporting/master/functest/functest.html

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/functest-reporting-status.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 OPNFV Functest

 		
 Functest Installation Guide

 		
 Introduction

 		
 High level architecture

 		
 Prerequisites

 		
 Docker installation

 		
 Public/External network on SUT

 		
 Installation and configuration

 		
 Functest Dockers for OpenStack deployment

 		
 Functest Dockers for Kubernetes deployment

 		
 Environment variables

 		
 Openstack credentials

 		
 SSL Support

 		
 Logs

 		
 Configuration

 		
 Tips

 		
 Docker

 		
 Checking Openstack and credentials

 		
 Proxy support

 		
 Docker Installation on CentOS behind http proxy

 		
 Integration in CI

 		
 References

 		
 Functest User Guide

 		
 Introduction

 		
 Overview of the Functest suites

 		
 VIM (Virtualized Infrastructure Manager)

 		
 Healthcheck tests

 		
 vPing_ssh

 		
 vPing_userdata

 		
 Tempest

 		
 Rally bench test suites

 		
 snaps_smoke

 		
 SDN Controllers

 		
 OpenDaylight

 		
 Features

 		
 VNF

 		
 cloudify_ims

 		
 heat_ims

 		
 vyos-vrouter

 		
 juju_epc

 		
 Kubernetes (K8s)

 		
 Test results

 		
 Manual testing

 		
 Automated testing

 		
 Test reporting

 		
 Troubleshooting

 		
 VIM

 		
 Controllers

 		
 Features

 		
 VNF

 		
 References

 		
 Functest Developer Guide

 		
 Introduction

 		
 Functest developer areas

 		
 Functest High level architecture

 		
 Functest internal test cases

 		
 Functest external test cases

 		
 Functest framework

 		
 Functest abstraction classes

 		
 Functest util classes

 		
 TestAPI

 		
 Reporting

 		
 Dashboard

 		
 How TOs

 		
 References

 		
 Functest Release Notes

 		
 OPNFV gambia release note for Functest

 		
 Abstract

 		
 OPNFV gambia Release

 		
 Release Data

 		
 Deliverables

 		
 Version change

 		
 Useful links

_images/clearwater-architecture-v2.png
<

>

State store interfaces:

Thrift (Cassandra)
Memcached
HTTP (Chronos)
Eted

Vellum
(State Store)

Distributed
databases

Diameter

CDF

Diameter

1 SIP

»|
Mg/Mj/Mk

MGCF
I-BCF

_images/concepts_mapping_fraser.png
Domains)
Tiers

connection_check

L» healthcheck

- || components

19pI0 UoNNIDXT

Functest Structural vnf

Concepts Overview
Fraser

NOTE : The « testcases » which are presented for a selected « tier »
are also dependent upon the «INSTALLER_TYPE» and
« DEPLOY_SCENARIO » environment variables, specified when the
Functest Docker Container is created. Not all « testcases» are
available for all the installers and all the scenarios.

api_check
snaps_health_check

tempest_full_parallel
rally_full

i

4 20 I

7 new in Fraser

[Testcases

N\

dool firep 10

dooj Airep 15 dooy Apeam (o

_images/FunctestDashboardEuphrates.png
Functest status page (master, 2017-09-13 06:22)

Home. Apex

compass

Compass

fuei@as

List of last scenarios (master) run over the last 10 days

HA Scenario

os-0dl_I3-nofeature-ha

os-nosdn-kvm-ha

os-odisicha

os-nosdn-nofeature-ha

NOHA Scenario

os-nosdn-kvm-noha

os-odl-sfc-noha

2

B
&

B
g
*® H

o

:

o

B
&

>

o

5
&

J

o

%

B
&

5
g
*® H

o

>

o

o
0901
e veatteame
50 -
o
0901

fuei@aarchés

1727

1130

1227

1227

1130

Heration

Heration

