
releng
Release Latest

Open Platform for NFV

Aug 18, 2021

CONTENTS

1 Releasing OPNFV 1
1.1 Release Process . 1
1.2 Release Automation . 1
1.3 Stable Branch . 3
1.4 Versioning . 3

2 OPNFV CI 5
2.1 CI User Guide . 5
2.2 CI Resources . 7
2.3 Development Resources . 10
2.4 CI Resources Labels . 10

3 Software Infrastructure 11
3.1 Continuous Integration Server . 11
3.2 Source Control and Code Review . 16
3.3 Artifact and Image Repositories . 17
3.4 Issue and Bug Tracking . 17
3.5 Dashboards and Analytics . 17

i

ii

CHAPTER

ONE

RELEASING OPNFV

1.1 Release Process

TBD

1.2 Release Automation

This page describes how projects can take advantage of the release automation introduced in Fraser for creating their
stable branch, and stable branch Jenkins jobs.

It also describes the structures of the releases directory and the associated scripts.

1.2.1 Stable Branch Creation

If your project participated in the last release (beginning with Euphrates), perform the following steps:

1. Copy your project’s release file to the new release directory. For example:

cp releases/euphrates/apex.yaml releases/fraser/apex.yaml

2. For projects who are participating the in the stable release process for the first time, you can either copy a
different project’s file and changing the values to match your project, or use the following template, replacing
values marked with < and >:

project: <opnfv-project-name>
project-type: <opnfv-project-type>
release-model: stable

branches:
- name: stable/<release>

location:
<project-repo>: <git-sha1>

3. Modify the file, replacing the previous stable branch name with the new release name, and the commit the
branch will start at. For example:

branches:
- name: stable/fraser

location:
apex: <git-full-sha1>

1

releng, Release Latest

4. If your project contains multiple repositories, add them to the list of branches. They can also be added later if
more time is needed before the stable branch window closes.

branches:
- name: stable/fraser

location:
apex: <git-sha1>

- name: stable/fraser
location:
apex-puppet-tripleo: <git-sha1>

5. Git add, commit, and git-review the changes. A job will be triggered to verify the commit exists on the branch,
and the yaml file follows the scheme listed in releases/schema.yaml

6. Once the commit has been reviewed and merged by Releng, a job will be triggered to create the stable branch
Jenkins jobs under jjb/.

1.2.2 Stable Release Tagging

TBD

1.2.3 Release File Fields

The following is a description of fields in the Release file, which are verified by the scheme file at releases/
schema.yaml

project Project team in charge of the release.

release-model Release model the project follows.

One of: stable, non-release

project-type Classification of project within OPNFV.

One of: installer, feature, testing, tools, infra

upstream (Optional) Upstream OpenStack project assocated with this project.

releases List of released versions for the project.

version Version of the release, must be in the format opnfv-X.Y.Z.

location Combination of repository and git hash to locate the release version.

Example:

opnfv-project: f15d50c2009f1f865ac6f4171347940313727547

branches List of stable branches for projects following the stable release-model.

name Stable branch name. Must start with the string stable/

location Same syntax as location under releases

release-notes Link to release notes for the projects per-release.

2 Chapter 1. Releasing OPNFV

releng, Release Latest

1.2.4 Scripts

• create_branch.py -f <RELEASE_FILE>

Create branches in Gerrit listed in the release file.

Must be ran from the root directory of the releng repository as the release name is extracted from the subdirectory
under releases/

The Gerrit server can be changed by creating a ~/releases.cfg file with the following content:

[gerrit]
url=http://gerrit.example.com

This will override the default configuration of using the OPNFV Gerrit server at https://gerrit.opnfv.org, and is
primarily used for testing.

• create_jobs.py -f <RELEASE_FILE>

Modifies the jenkins job files for a project to add the stable branch stream. Assumes the jenkins jobs are found
in the releng repository under jjb/<project>/

• verify_schema -s <SCHEMA_FILE> -y <YAML_FILE>

Verifies the yaml file matches the specified jsonschema formatted file. Used to verify the release files under
releases/

1.3 Stable Branch

TBD

1.4 Versioning

TBD

1.3. Stable Branch 3

https://gerrit.opnfv.org

releng, Release Latest

4 Chapter 1. Releasing OPNFV

CHAPTER

TWO

OPNFV CI

OPNFV continuous integration (CI) is ran on a variety of hardware connected to Jenkins and mangaged through
YAML files in the Releng repository. These YAML files are read by Jenkins Job Builder to generate and upload
Jenkins jobs to the server. See the User Guide for resources on getting started with CI for your project.

2.1 CI User Guide

2.1.1 Structure of the Releng Repository

jjb/<projects> Individual project CI configurations.

jjb/global Collection of JJB defaults and templates shared by all projects.

global-jjb/ Git submodule pointing to Global-JJB, which provides a variety of common CI jobs such as ReadTheDocs
(RTD) builds.

docs/ This documentation.

releases/ Release configuration files for creating stable branches and tagging repositories and related automation
scripts.

utils/ Collection of common utilities used by projects

utils/build-server-ansible Ansible configuration for managing build servers. This is where projects can add packages
they need for their CI to the servers.

2.1.2 CI Setup

Basic Setup

All projects are required to have a +1 Verified vote in Gerrit in order to merge their code. As a new project that comes
in may not yet know how they want to setup CI, they can pass this validation by configuring a ‘no-op’ job to run
against their changesets.

1. Clone the Releng repository, using the Clone with commit-msg hook command under the SSH tab (displayed
after logging in and uploading an SSH key):

Note: <gerrit username> in the command below will be your username in Gerrit when viewing the command
on the website.

For example:

5

https://gerrit.opnfv.org/gerrit/admin/repos/releng
https://docs.openstack.org/infra/jenkins-job-builder/
https://docs.releng.linuxfoundation.org/projects/global-jjb/en/latest/index.html
https://docs.releng.linuxfoundation.org/projects/global-jjb/en/latest/index.html#global-jjb-templates
https://gerrit.opnfv.org/gerrit/admin/repos/releng

releng, Release Latest

git clone "ssh://<gerrit username>@gerrit.opnfv.org:29418/releng" && \
scp -p -P 29418 <gerrit username>@gerrit.opnfv.org:hooks/commit-msg "releng/.git/
→˓hooks/"

2. Create a project directory under the jjb/ directory, and an intial project YAML file:

mkdir jjb/myproject
touch jjb/myproject/myproject-ci-jobs.yaml

3. Modify the project YAML file to add the basic validation job:

$EDITOR jjb/myproject/myproject-ci-jobs.yaml

- project:

name: myproject
project:
- '{name}'

jobs:
- '{project}-verify-basic'

Docker Builds

Docker build are managed through the jjb/releng/opnfv-docker.yaml file. Modify this file with your project details
to enable docker builds on merges and tags to your project repository:

- project:

name: opnfv-docker'

[...]

dockerrepo:
[...]
- 'myproject':

project: 'myproject'
<<: *master

Documentation Builds

Documentation is build using they Python Sphinx project. You can read more about how these build work and how
your documentation should be setup in the opnfvdocs project.

Create a file at jjb/myproject/myproject-rtd-builds.yaml with the following content:

- project:

name: myproject-rtd
project: myproject
project-name: myproject

project-pattern: 'myproject'
rtd-build-url: <request from LFN IT>
rtd-token: <request from LFN IT>

(continues on next page)

6 Chapter 2. OPNFV CI

https://docs.opnfv.org/en/latest/how-to-use-docs/index.html

releng, Release Latest

(continued from previous page)

jobs:
- '{project-name}-rtd-jobs'

Note: Open a ticket with a link to the change adding your documentation at support.linuxfoundation.org and the LFN
IT team will provide you the rtd-build-url and rtd-token.

This will create jobs to build your project documentation (under docs/ in your project repository) on proposed changes,
and trigger a rebuild on the RTD site when code is merged in your project.

2.2 CI Resources

CI for OPNFV requires a range of resources in order to meet testing and verification needs. Each resource must meet
a set of criteria in order to be part of CI for an OPNFV release. There are three types of resources:

• Baremetal PODs (PODs)

• Virtual PODs (vPODs)

• Build Servers

2.2.1 Baremetal PODs

Baremetal PODs are used to deploy OPNFV on to baremetal hardware through one of the installer projects. They
enable the full range of scenarios to be deployed and tested.

Requirements

In order of a POD to be considered CI-Ready the following requirements must be met:

1. Pharos Compliant and has a PDF

2. Connected to Jenkins

3. 24/7 Uptime

4. No Development

5. No manual intervention

2.2. CI Resources 7

https://jira.linuxfoundation.org/plugins/servlet/theme/portal/2/create/145

releng, Release Latest

Table 1: CI Servers for Baremetal Deployment
Node Usage Jumphost OS / Version PDF IDF
arm-pod9 Armband Ubuntu 16.04 PDF IDF
arm-pod10 Fuel Ubuntu 16.04 PDF IDF
ericsson-pod1 Fuel Ubuntu 16.04 PDF IDF
ericsson-pod2 XCI Ubuntu 16.04 PDF IDF
flex-pod1 Yardstick PDF IDF
flex-pod2 Apex PDF IDF
huawei-pod1 Compass4NFV PDF IDF
huawei-pod2 Compass4NFV Ubuntu 14.04 PDF IDF
huawei-pod3 Yardstick Ubuntu 14.04 PDF IDF
huawei-pod4 Dovetail PDF IDF
huawei-pod6 Ubuntu 14.04 PDF IDF
huawei-pod7 Dovetail Ubuntu 14.04 PDF IDF
huawei-pod8 Compass4NFV Ubuntu 16.04 (aarch64) PDF IDF
huawei-pod12 JOID Ubuntu 16.04 PDF IDF
intel-pod10 KVMforNFV CentOS 7 PDF IDF
intel-pod11 Apex PDF IDF
intel-pod12 VSPerf CentOS 7 PDF IDF
intel-pod17 Airship PDF IDF
intel-pod18 Airship PDF IDF
lf-pod1 Apex CentOS 7 PDF IDF
lf-pod2 Fuel CentOS 7 PDF IDF
unh-pod1 Auto Ubuntu 16.04 (aarch64) PDF IDF
zte-pod1 PDF IDF
zte-pod2 PDF IDF
zte-pod3 PDF IDF
zte-pod4 PDF IDF
zte-pod9 PDF IDF

2.2.2 Virtual PODs

Virtual PODs are used to deploy OPNFV in a virtualized environment generally on top of KVM through libvirt.

Requirements

1. Have required virtualization packages installed

2. Meet the Pharos resource specification for virtual PODs

3. Connected to Jenkins

4. 24/7 Uptime

Table 2: CI Servers for Virtual Deployment
Node Architecture OS Contact
arm-virtual2 aarch64 Ubuntu 16.04 Armband ENEA Team
arm-virtual3 aarch64 Ubuntu 16.04 Xuan Jia
arm-virtual4 aarch64 Ubuntu 16.04 Xuan Jia
ericsson-virtual-pod1bl01 x86_64 CentOS 7
ericsson-virtual1 x86_64 Ubuntu 16.04
ericsson-virtual2 x86_64 Ubuntu 16.04

continues on next page

8 Chapter 2. OPNFV CI

https://build.opnfv.org/ci/computer/arm-pod9
https://git.opnfv.org/pharos/plain/labs/arm/pod9.yaml
https://git.opnfv.org/pharos/plain/labs/arm/idf-pod9.yaml
https://build.opnfv.org/ci/computer/arm-pod10
https://git.opnfv.org/pharos/plain/labs/arm/pod10.yaml
https://git.opnfv.org/pharos/plain/labs/arm/idf-pod10.yaml
https://build.opnfv.org/ci/computer/ericsson-pod1
https://git.opnfv.org/pharos/plain/labs/ericsson/pod1.yaml
https://git.opnfv.org/pharos/plain/labs/ericsson/idf-pod1.yaml
https://build.opnfv.org/ci/computer/ericsson-pod2
https://git.opnfv.org/pharos/plain/labs/ericsson/pod2.yaml
https://git.opnfv.org/pharos/plain/labs/ericsson/idf-pod2.yaml
https://build.opnfv.org/ci/computer/flex-pod1
https://build.opnfv.org/ci/computer/flex-pod2
https://build.opnfv.org/ci/computer/huawei-pod1
https://git.opnfv.org/pharos/plain/labs/huawei/pod1.yaml
https://git.opnfv.org/pharos/plain/labs/huawei/idf-pod1.yaml
https://build.opnfv.org/ci/computer/huawei-pod2
https://build.opnfv.org/ci/computer/huawei-pod3
https://build.opnfv.org/ci/computer/huawei-pod4
https://build.opnfv.org/ci/computer/huawei-pod6
https://build.opnfv.org/ci/computer/huawei-pod7
https://build.opnfv.org/ci/computer/huawei-pod8
https://build.opnfv.org/ci/computer/huawei-pod12
https://build.opnfv.org/ci/computer/intel-pod10
https://build.opnfv.org/ci/computer/intel-pod11
https://build.opnfv.org/ci/computer/intel-pod12
https://build.opnfv.org/ci/computer/intel-pod17
https://build.opnfv.org/ci/computer/intel-pod18
https://build.opnfv.org/ci/computer/lf-pod1
https://git.opnfv.org/pharos/plain/labs/lf/pod1.yaml
https://build.opnfv.org/ci/computer/lf-pod2
https://git.opnfv.org/pharos/plain/labs/lf/pod2.yaml
https://git.opnfv.org/pharos/plain/labs/lf/idf-pod2.yaml
https://build.opnfv.org/ci/computer/unh-pod1
https://build.opnfv.org/ci/computer/zte-pod1
https://git.opnfv.org/pharos/plain/labs/zte/pod1.yaml
https://git.opnfv.org/pharos/plain/labs/zte/idf-pod1.yaml
https://build.opnfv.org/ci/computer/zte-pod2
https://git.opnfv.org/pharos/plain/labs/zte/pod2.yaml
https://git.opnfv.org/pharos/plain/labs/zte/idf-pod2.yaml
https://build.opnfv.org/ci/computer/zte-pod3
https://git.opnfv.org/pharos/plain/labs/zte/pod3.yaml
https://git.opnfv.org/pharos/plain/labs/zte/idf-pod3.yaml
https://build.opnfv.org/ci/computer/zte-pod4
https://build.opnfv.org/ci/computer/zte-pod9
https://git.opnfv.org/pharos/plain/labs/zte/pod9.yaml
https://git.opnfv.org/pharos/plain/labs/zte/idf-pod9.yaml
https://build.opnfv.org/ci/computer/arm-virtual2
mailto:armband@enea.com
https://build.opnfv.org/ci/computer/arm-virtual3
https://build.opnfv.org/ci/computer/arm-virtual4
https://build.opnfv.org/ci/computer/ericsson-virtual-pod1bl01
https://build.opnfv.org/ci/computer/ericsson-virtual1
https://build.opnfv.org/ci/computer/ericsson-virtual2

releng, Release Latest

Table 2 – continued from previous page
Node Architecture OS Contact
ericsson-virtual3 x86_64 Ubuntu 16.04
ericsson-virtual4 x86_64 Ubuntu 16.04
ericsson-virtual5 x86_64 Ubuntu 16.04
huawei-virtual1 x86_64 Ubuntu 14.04
huawei-virtual2 x86_64 Ubuntu 14.04
huawei-virtual3 x86_64 Ubuntu 14.04
huawei-virtual4 x86_64 Ubuntu 14.04
huawei-virtual5 x86_64
huawei-virtual6 x86_64 Ubuntu 16.04
huawei-virtual7 x86_64 Ubuntu 14.04
huawei-virtual8 x86_64 Ubuntu 14.04
huawei-virtual9 x86_64 Ubuntu 14.04
intel-virtual3 x86_64
intel-virtual11 x86_64
intel-virtual12 x86_64
intel-virtual13 x86_64
intel-virtual14 x86_64
intel-virtual15 x86_64
intel-virtual16 x86_64
lf-virtual1 x86_64 Ubuntu 14.04 Linux Foundation
lf-virtual2 x86_64 CentOS 7 Linux Foundation
lf-virtual3 x86_64 CentOS 7 Linux Foundation
ool-virtual1 x86_64
ool-virtual2 x86_64
ool-virtual3 x86_64
zte-virtual1 x86_64
zte-virtual2 x86_64
zte-virtual3 x86_64
zte-virtual4 x86_64
zte-virtual5 x86_64
zte-virtual6 x86_64

2.2.3 Build Servers

Build servers are used to build project, run basic verifications (such as unit tests and linting), and generate documen-
tation.

Requirements

1. Have required packages_ installed

2. 24/7 Uptime

3. Connected to Jenkins

Table 3: CI Build Servers
Node Architecture OS Contact
arm-build3 aarch64 CentOS 7.4 Armband ENEA Team
arm-build4 aarch64 Ubuntu 16.04 Armband ENEA Team
lf-build5 x86_64 Ubuntu 18.04 Linux Foundation
lf-build6 x86_64 CentOS 8 Linux Foundation

2.2. CI Resources 9

https://build.opnfv.org/ci/computer/ericsson-virtual3
https://build.opnfv.org/ci/computer/ericsson-virtual4
https://build.opnfv.org/ci/computer/ericsson-virtual5
https://build.opnfv.org/ci/computer/huawei-virtual1
https://build.opnfv.org/ci/computer/huawei-virtual2
https://build.opnfv.org/ci/computer/huawei-virtual3
https://build.opnfv.org/ci/computer/huawei-virtual4
https://build.opnfv.org/ci/computer/huawei-virtual5
https://build.opnfv.org/ci/computer/huawei-virtual6
https://build.opnfv.org/ci/computer/huawei-virtual7
https://build.opnfv.org/ci/computer/huawei-virtual8
https://build.opnfv.org/ci/computer/huawei-virtual9
https://build.opnfv.org/ci/computer/intel-virtual3
https://build.opnfv.org/ci/computer/intel-virtual11
https://build.opnfv.org/ci/computer/intel-virtual12
https://build.opnfv.org/ci/computer/intel-virtual13
https://build.opnfv.org/ci/computer/intel-virtual14
https://build.opnfv.org/ci/computer/intel-virtual15
https://build.opnfv.org/ci/computer/intel-virtual16
https://build.opnfv.org/ci/computer/lf-virtual1
mailto:helpdesk@opnfv.org
https://build.opnfv.org/ci/computer/lf-virtual2
mailto:helpdesk@opnfv.org
https://build.opnfv.org/ci/computer/lf-virtual3
mailto:helpdesk@opnfv.org
https://build.opnfv.org/ci/computer/ool-virtual1
https://build.opnfv.org/ci/computer/ool-virtual2
https://build.opnfv.org/ci/computer/ool-virtual3
https://build.opnfv.org/ci/computer/zte-virtual1
https://build.opnfv.org/ci/computer/zte-virtual2
https://build.opnfv.org/ci/computer/zte-virtual3
https://build.opnfv.org/ci/computer/zte-virtual4
https://build.opnfv.org/ci/computer/zte-virtual5
https://build.opnfv.org/ci/computer/zte-virtual6
https://build.opnfv.org/ci/computer/arm-build3
mailto:armband@enea.com
https://build.opnfv.org/ci/computer/arm-build4
mailto:armband@enea.com
https://build.opnfv.org/ci/computer/lf-build5
mailto:helpdesk@opnfv.org
https://build.opnfv.org/ci/computer/lf-build6
mailto:helpdesk@opnfv.org

releng, Release Latest

2.3 Development Resources

Table 4: Baremetal Development Servers
Node Usage Jumphost OS / Version PDF IDF
cacti-pod1
cengn-pod1
itri-pod1
lf-pod4
lf-pod5
nokia-pod1
ool-pod1
bii-pod1

2.4 CI Resources Labels

ci-resource Resource devoted to CI

ci-pod POD devoted to CI

opnfv-build Node is for builds - independent of OS

opnfv-build-centos Node is for builds needing CentOS

opnfv-build-centos-arm Node is for ARM builds on CentOS

opnfv-build-ubuntu Node is for builds needing Ubuntu

opnfv-build-ubuntu-arm Node is for ARM builds on Ubuntu

{installer}-baremetal POD is devoted to {installer} for baremetal deployments

{installer}-virtual Server is devoted to {installer} for virtual deployments

10 Chapter 2. OPNFV CI

CHAPTER

THREE

SOFTWARE INFRASTRUCTURE

OPNFV Software Infrastructure consists of set of components and tools that realize OPNFV Continuous Integration
(CI) and provide means for community to contribute to OPNFV in most efficient way. OPNFV Software Infrastructure
enables and orchestrates development, integration and testing activities for the components OPNFV consumes from
upstream communities and for the development work done in scope of OPNFV. Apart from orchestration aspects,
providing timely feedback that is fit for purpose to the OPNFV community is one of its missions.

CI is the top priority for OPNFV Software Infrastructure. Due to the importance the OPNFV community puts into it,
the resulting CI machinery is highly powerful, capable and runs against distributed hardware infrastructure managed
by OPNFV Pharos Project. The hardware infrastructure OPNFV CI relies on is located in 3 different continents, 5+
different countries and 10+ different member companies.

OPNFV CI is continuously evolved in order to fulfill the needs and match the expectations of the OPNFV community.

OPNFV Software Infrastructure is developed, maintained and operated by OPNFV Releng Project with the support
from Linux Foundation.

3.1 Continuous Integration Server

Jenkins

3.1.1 Connecting OPNFV Community Labs to OPNFV Jenkins

Table of Contents

• Connecting OPNFV Community Labs to OPNFV Jenkins

– Abstract

– License

– Version History

– Jenkins

– Jenkins Slaves

– Connecting Slaves to OPNFV Jenkins

* Connecting Slaves from LF Lab to OPNFV Jenkins

* Connecting Slaves from Community Labs to OPNFV Jenkins

– Notes

11

https://wiki.opnfv.org/display/pharos/Pharos+Home
https://wiki.opnfv.org/display/releng/Releng

releng, Release Latest

* PGP Key Instructions

– References

Abstract

This document describes how to connect resources (servers) located in Linux Foundation (LF) lab and labs provided
by the OPNFV Community to OPNFV Jenkins.

License

Connecting OPNFV Community Labs to OPNFV Jenkins (c) by Fatih Degirmenci (Ericsson AB) and others.

Connecting OPNFV Labs to OPNFV Jenkins document is licensed under a Creative Commons Attribution 4.0 Inter-
national License.

You should have received a copy of the license along with this. If not, see <http://creativecommons.org/licenses/by/4.
0/>.

Version History

Date Ver-
sion

Author Comment

2015-05-
05

0.1.0 Fatih Degir-
menci

First draft

2015-09-
25

1.0.0 Fatih Degir-
menci

Instructions for the Arno SR1 release

2016-01-
25

1.1.0 Jun Li Change the format for new doc toolchain

2016-01-
27

1.2.0 Fatih Degir-
menci

Instructions for the Brahmaputra release

2016-05-
25

1.3.0 Julien Add an additional step after step9 to output the correct monit config
file

Jenkins

Jenkins is an extensible open source Continuous Integration (CI) server. [1]

Linux Foundation (LF) hosts and operates OPNFV Jenkins.

Jenkins Slaves

Slaves are computers that are set up to build projects for a Jenkins Master. [2]

Jenkins runs a separate program called “slave agent” on slaves. When slaves are registered to a master, the master
starts distributing load to slaves by scheduling jobs to run on slaves if the jobs are set to run on them. [2]

Term Node is used to refer to all machines that are part of Jenkins grid, slaves and master. [2]

Two types of slaves are currently connected to OPNFV Jenkins and handling different tasks depending on the purpose
of connecting the slave.

12 Chapter 3. Software Infrastructure

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://build.opnfv.org/ci/

releng, Release Latest

• Slaves hosted in LF Lab

• Slaves hosted in Community Test Labs

The slaves connected to OPNFV Jenkins can be seen using this link: https://build.opnfv.org/ci/computer/

Slaves without red cross next to computer icon are fully functional.

Connecting Slaves to OPNFV Jenkins

The method that is normally used for connecting slaves to Jenkins requires direct SSH access to servers. [3] This is
the method that is used for connecting slaves hosted in LF Lab.

Connecting slaves using direct SSH access can become a challenge given that OPNFV Project has number of different
labs provided by community as mentioned in previous section. All these labs have different security requirements
which can increase the effort and the time needed for connecting slaves to Jenkins. In order to reduce the effort and
the time needed for connecting slaves and streamline the process, it has been decided to connect slaves using Java
Network Launch Protocol (JNLP).

Connecting Slaves from LF Lab to OPNFV Jenkins

Slaves hosted in LF Lab are handled by LF. All the requests and questions regarding these slaves should be submitted
to OPNFV LF Helpdesk.

Connecting Slaves from Community Labs to OPNFV Jenkins

As noted in corresponding section, slaves from Community Labs are connected using JNLP. Via JNLP, slaves open
connection towards Jenkins Master instead of Jenkins Master accessing to them directly.

Servers connecting to OPNFV Jenkins using this method must have access to internet.

Please follow below steps to connect a slave to OPNFV Jenkins.

1. Create a user named jenkins on the machine you want to connect to OPNFV Jenkins and give the user sudo
rights.

2. Install needed software on the machine you want to connect to OPNFV Jenkins as slave.

• openjdk 8

• monit

3. If the slave will be used for running virtual deployments, Functest, and Yardstick, install below software and
make jenkins user the member of the groups.

• docker

• libvirt

4. Create slave root in Jenkins user home directory.

mkdir -p /home/jenkins/opnfv/slave_root

5. Clone OPNFV Releng Git repository.

mkdir -p /home/jenkins/opnfv/repos
cd /home/jenkins/opnfv/repos
git clone https://gerrit.opnfv.org/gerrit/p/releng.git

6. Contact LF by creating a ticket to Connect my 3rd party CI/Lab Include the following information in your ticket.

3.1. Continuous Integration Server 13

https://wiki.opnfv.org/get_started/lflab_hosting#hardware_setup
https://wiki.opnfv.org/pharos#community_test_labs
https://build.opnfv.org/ci/computer/
https://docs.oracle.com/javase/tutorial/deployment/deploymentInDepth/jnlp.html
https://docs.oracle.com/javase/tutorial/deployment/deploymentInDepth/jnlp.html
mailto:opnfv-helpdesk@rt.linuxfoundation.org
https://jira.linuxfoundation.org/servicedesk/customer/portal/2/create/135

releng, Release Latest

• Slave root (/home/jenkins/opnfv/slave_root)

• Public IP of the slave (You can get the IP by executing curl http://icanhazip.com/)

• PGP Key (attached to the mail or exported to a key server)

7. Once you get confirmation from LF stating that your slave is created on OPNFV Jenkins, check if the firewall
on LF is open for the server you are trying to connect to Jenkins.

cp /home/jenkins/opnfv/repos/releng/utils/jenkins-jnlp-connect.sh /home/jenkins/
cd /home/jenkins/
sudo ./jenkins-jnlp-connect.sh -j /home/jenkins -u jenkins -n <slave name on
→˓OPNFV Jenkins> -s <the token you received from LF> -f

• If you receive an error, follow the steps listed on the command output.

8. Run the same script with test(-t) on foreground in order to make sure no problem on connection. You should see
INFO: Connected in the console log.

sudo ./jenkins-jnlp-connect.sh -j /home/jenkins -u jenkins -n <slave name
on OPNFV Jenkins> -s <the token you received from LF> -t

• If you receive an error similar to the one shown on this link, you need to check your firewall and allow
outgoing connections for the port.

9. Kill the Java slave.jar process.

10. Run the same script normally without test(-t) in order to get monit script created.

sudo ./jenkins-jnlp-connect.sh -j /home/jenkins -u jenkins -n <slave name
on OPNFV Jenkins> -s <the token you received from LF>

11. Edit monit configuration and enable http interface. The file to edit is /etc/monit/monitrc on Ubuntu systems.
Uncomment below lines.

set httpd port 2812 and
use address localhost # only accept connection from localhost
allow localhost # allow localhost to connect to the server and

12. Restart monit service.

• Without systemd:

sudo service monit restart

• With systemd: you have to enable monit service first and then restart it.

sudo systemctl enable monit
sudo systemctl restart monit

13. Check to see if jenkins comes up as managed service in monit.

sudo monit status

14. Connect slave to OPNFV Jenkins using monit.

sudo monit start jenkins

15. Check slave on OPNFV Jenkins to verify the slave is reported as connected.

• The slave on OPNFV Jenkins should have some executors in “Idle” state if the connection is successful.

14 Chapter 3. Software Infrastructure

http://hastebin.com/ozadagirax.avrasm

releng, Release Latest

Notes

PGP Key Instructions

Public PGP Key can be uploaded to public key server so it can be taken from there using your mail address. Example
command to upload the key to key server is

gpg --keyserver hkp://keys.gnupg.net:80 --send-keys XXXXXXX

The Public PGP Key can also be attached to the email by storing the key in a file and then attaching it to the email.

gpg --export -a '<your email address>' > pgp.pubkey

References

• What is Jenkins

• Jenkins Terminology

• Jenkins SSH Slaves Plugin

3.1.2 Jenkins User Guide

TBD

3.1.3 Creating/Configuring/Verifying Jenkins Jobs

Clone and setup the repo:

git clone --recursive ssh://YOU@gerrit.opnfv.org:29418/releng
cd releng
git review -s

Make changes:

git commit -sv
git review
remote: Resolving deltas: 100% (3/3)
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: https://gerrit.opnfv.org/gerrit/<CHANGE_ID>
remote:
To ssh://YOU@gerrit.opnfv.org:29418/releng.git

* [new branch] HEAD -> refs/publish/master

Test with tox:

tox -e jjb

Note: You can also test the jobs under a single jjb directory by specifying the directory. For example to test only the
releng jobs, you could run:

tox -e jjb – jjb/global:jjb/global-jjb:jjb/releng

3.1. Continuous Integration Server 15

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Terminology
https://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin

releng, Release Latest

Submit the change to gerrit:

git review -v

Follow the link given in the stdoutput to gerrit eg: https://gerrit.opnfv.org/gerrit/<CHANGE_ID>
the verify job will have completed and you will see Verified +1 jenkins-ci in the gerrit ui.

If the changes pass the verify job https://build.opnfv.org/ci/job/releng-verify-jjb/ , the patch can be submitited by a
committer.

Job Types

• Verify Job

– Trigger: recheck or reverify

• Merge Job

– Trigger: remerge

• Experimental Job

– Trigger: check-experimental

The verify and merge jobs are retriggerable in Gerrit by simply leaving a comment with one of the keywords listed
above. This is useful in case you need to re-run one of those jobs in case if build issues or something changed with the
environment.

The experimental jobs are not triggered automatically. You need to leave a comment with the keyword list above to
trigger it manually. It is useful for trying out experimental features.

Note that, experimental jobs skip vote for verified status, which means it will reset the verified status to 0. If you want
to keep the verified status, use recheck-experimental in commit message to trigger both verify and experimental jobs.

You can look in the releng/INFO file for a list of current committers to add as reviewers to your patch in order to get
it reviewed and submitted.

Or Add the group releng-contributors

Or just email a request for review to helpdesk@opnfv.org

The Current merge and verify jobs for jenkins job builder can be found in releng-jobs.yaml.

3.1.4 Jenkins Node Labels

TBD

3.2 Source Control and Code Review

Gerrit

16 Chapter 3. Software Infrastructure

https://build.opnfv.org/ci/job/releng-verify-jjb/
https://wiki.jenkins-ci.org/display/JENKINS/Gerrit+Trigger#GerritTrigger-SkipVote
mailto:helpdesk@opnfv.org
https://gerrit.opnfv.org/gerrit/gitweb?p=releng.git;a=blob;f=jjb/releng-jobs.yaml;

releng, Release Latest

3.2.1 Gerrit User Guide

3.3 Artifact and Image Repositories

Google Storage & Docker Hub

3.3.1 Artifact Repository

TBD

3.3.2 Docker Hub

TBD

3.4 Issue and Bug Tracking

JIRA

3.4.1 JIRA User Guide

TBD

3.5 Dashboards and Analytics

• Pharos Dashboard

• Test Results

• Bitergia Dashboard

3.3. Artifact and Image Repositories 17

https://labs.opnfv.org/
https://testresults.opnfv.org/
https://opnfv.biterg.io/

	Releasing OPNFV
	Release Process
	Release Automation
	Stable Branch
	Versioning

	OPNFV CI
	CI User Guide
	CI Resources
	Development Resources
	CI Resources Labels

	Software Infrastructure
	Continuous Integration Server
	Source Control and Code Review
	Artifact and Image Repositories
	Issue and Bug Tracking
	Dashboards and Analytics

